Металл восстанавливающий форму. Металлы с памятью формы. Механизм эффекта памяти формы. Применение сплавов с эффектом памяти формы в медицине

Одно из базовых восприятий людьми явлений внешнего мира, это стойкость и надежность металлических изделий и конструкций стабильно сохраняющих свою функциональную форму продолжительное время, если, конечно, они не подвергаются закритическим воздействиям.

Однако, вопреки здравому смыслу есть ряд материалов, металлических сплавов, которые при нагреве, после предварительной деформации, демонстрируют явление возврата к первоначальной форме. То есть эти металлы, не являясь живыми существами, обладают особым свойством, позволяющим им проявлять своеобразную память.

Феномен

Чтобы понять эффект памяти формы, достаточно один раз увидеть его проявление. Что происходит?

Демонстрация эффекта "памяти" формы
Есть металлическая проволока. Эту проволоку изгибают.
Начинаем нагревать проволоку. При нагреве проволока распрямляется, восстанавливая свою исходную форму.

Суть явления

Почему так происходит?

Суть явления

В исходном состоянии в материале есть определенная структура. На рисунке она обозначена правильными квадратами.

При деформации (в данном случае изгибе) внешние слои материала вытягиваются, а внутренние сжимаются (средние остаются без изменения). Эти вытянутые структуры - мартенситные пластины. Что не является необычным для металлических сплавов. Необычным является то, что в материалах с памятью формы мартенсит термоупругий.

При нагреве начинает проявляться термоупругость мартенситных пластин, то есть в них возникают внутренние напряжения, которые стремятся вернуть структуру в исходное состояние, т. е. сжать вытянутые пластины и растянуть сплюснутые.

Поскольку внешние вытянутые пластины сжимаются, а внутренние сплюснутые растягиваются, материал в целом проводит автодеформацию в обратную сторону и восстанавливает свою исходную структуру, а вместе с ней и форму.

Характеристики эффекта памяти формы

Эффект памяти формы характеризуется двумя величинами.

  • Маркой сплава со строго выдержанным химическим составом. (См. далее «Материалы с памятью формы»)
  • Температурами мартенситных превращений .

В процессе проявления эффекта памяти формы участвуют мартенситные превращения двух видов - прямое и обратное. Соответственно каждое из них проявляется в своем температурном интервале: МН и МК - начало и конец прямого мартенситного превращения при деформации, АН и АК - начало и конец при нагреве.

Температуры мартенситных превращений являются функцией как марки сплава (системы сплава), так и его химического состава. Небольшие изменения химического состава сплава (намеренные или как результат брака) ведут к сдвигу этих температур.

Отсюда следует необходимость строгой выдержки химического состава сплава для однозначного функционального проявления эффекта памяти формы . Что переводит металлургическое производство в сферу высоких технологий.

Эффект памяти формы проявляется несколько миллионов циклов.

Предварительными термообработками можно усиливать эффект памяти формы .

Возможны реверсивные эффекты памяти формы , когда материал при одной температуре «вспоминает» одну форму, а при другой температуре другую.

Чем выше температуры обратного мартенситного превращения , тем в меньшей степени выражен эффект памяти формы . Например, слабый эффект памяти формы наблюдается в сплавах системы Fe-Ni (5 - 20%Ni), у которых температуры обратного мартенситного превращения 200 - 400˚C.

Сверхупругость

Другим явлением тесно связанным с эффектом памяти формы является сверхупругость .

Сверхупругость - свойство материала, подвергнутого нагружению до напряжения, значительно превышающего предела текучести, полностью восстанавливать первоначальную форму после снятия нагрузки.

Сверхупругое поведение на порядок выше упругого.

Сверхупругость наблюдается в области температур между началом прямого мартенситного превращения и концом обратного.

Материалы с эффектом памяти формы

Никелид титана

Лидером среди материалов с памятью формы по применению и по изученности является никелид титана .

Никелид титана - это интерметаллид эквиатомного состава с 55 мас.%Ni. Температура плавления 1240 - 1310˚C, плотность 6,45 г/см3. Исходная структура никелида титана стабильная объемно-центрированная кубическая решетка типа CsCl при деформации претерпевает термоупругое мартенситное превращение с образованием фазы низкой симметрии.

Другое название этого сплава, принятое за рубежом, - нитинол происходит от аббревиатуры NiTiNOL , где NOL - это сокращенное название Лаборатории морской артиллерии США, где этот материал был разработан в 1962 году.

Элемент из никелида титана может исполнять функции как датчика, так и исполнительного механизма.

Никелид титана обладает:

  • Превосходной коррозионной стойкостью.
  • Высокой прочностью.
  • Хорошими характеристиками формозапоминания. Высокий коэффициент восстановления формы и высокая восстанавливающая сила. Деформация до 8% может полностью восстанавливаться. Напряжение восстановления при этом может достигать 800 МПа.
  • Хорошая совместимость с живыми организмами.
  • Высокая демпфирующая способность материала.

Недостатки:

  • Из-за наличия титана сплав легко присоединяет азот и кислород. Чтобы предотвратить реакции с этими элементами при производстве надо использовать вакуумное оборудование.
  • Затруднена обработка при изготовлении деталей, особенно резанием. (Оборотная сторона высокой прочности).
  • Высокая цена. В конце XX века он стоил чуть дешевле серебра.

При современном уровне промышленного производства изделия из никелида титана (наряду со сплавами системы Cu-Zn-Al) нашли широкое практическое применение и рыночный сбыт. (См. далее «Применение материалов с памятью формы»).

Другие сплавы

На конец XX века эффект памяти формы был обнаружен более чем у 20 сплавов. Кроме никелида титана эффект памяти формы обнаружен в системах:

  • Au-Cd . Разработан в 1951 году в Иллинойском университете, США. Один из пионеров материалов с памятью формы.
  • Cu-Zn-Al . Наряду с никелидом титана имеет практическое применение. Температуры мартенситных превращений в интервале от -170 до 100˚C.
    • Преимущества (по сравнению с никелидом титана ):
      • Можно выплавлять в обычной атмосфере.
      • Легко обрабатывается резанием.
      • Цена - в пять раз дешевле.
    • Недостатки:
      • Хуже по характеристикам формозапоминания.
      • Хуже механические и коррозионные свойства.
      • При термообработке легко происходит укрупнение зерна, что приводит к снижению механических свойств.
      • Проблемы стабилизации зерна в порошковой металлургии.
  • Cu-Al-Ni . Разработан в университете города Осака, Япония. Температуры мартенситных превращения в интервале от 100 до 200˚C.
  • Fe-Mn-Si . Сплавы этой системы наиболее дешевые.
  • Fe-Ni
  • Cu-Al
  • Cu-Mn
  • Co-Ni
  • Ni-Al

Некоторые исследователи полагают, что эффект памяти формы принципиально возможен у любых материалов, претерпевающих мартенситные превращения , в том числе и у таких чистых металлов как титан, цирконий и кобальт.

Производство никелида титана

Плавка происходит в вакуумно-гарнисажной печи или в электродуговой печи с расходуемым электродом в защитной атмосфере (гелий или аргон). Шихтой в обоих случаях служит йодидный титан или титановая губка, спрессованная в брикеты, и никель марки Н-0 или Н-1.

Для получения равномерного химического состава по сечению и высоте слитка рекомендуется двойной или тройной переплав.

Оптимальный режим остывания слитков с целью предотвращения растрескивания - охлаждение с печью (не больше 10˚ в секунду).

Удаление поверхностных дефектов - обдирка наждачным кругом.

Для более полного выравнивая химического состава по объему слитка проводят гомогенизацию при температуре 950 - 1000˚C в инертной атмосфере.

Применение материалов с эффектом памяти формы

Соединительные втулки из никелида титана

Втулка, впервые разработанная и внедренная фирмой «Рейхем Корпорейшен», США, для соединения труб гидравлической системы военных самолетов. В истребителе более 300 тысяч таких соединений, но ни разу не поступило сообщений об их поломках.

Применение таких втулок заключается в следующем:

Применение соединительных втулок
Втулка в исходном состоянии при температуре 20˚C.
Втулка помещается в криостат, где при температуре -196˚C плунжером развальцовываются внутренние выступы.
Холодная втулка становится изнутри гладкой.

Специальными клещами втулку вынимают из криостата и надевают на концы соединяемых труб.

Комнатная температура является температурой нагрева для данного состава сплава. Дальше все происходит «автоматически». Внутренние выступы «вспоминают» свою исходную форму, выпрямляются и врезаются во внешнюю поверхность соединяемых труб.

Получается прочное вакуумплотное соединение выдерживающее давление до 800 атм.

По сути дела этот тип соединения заменяет сварку. И предотвращает такие недостатки сварного шва, как неизбежное разупрочнение металла и накопление дефектов в переходной зоне между металлом и сварным швом.

Кроме того, этот метод соединения хорош для финального соединения при сборке конструкции, когда сварка из-за переплетения узлов и трубопроводов становится трудно доступной.

Эти втулки используются в авиационной, космической и автомобильной технике.

Этот метод также используется для соединения и ремонта труб подводных кабелей.

В медицине

  • Перчатки, применяемые в процессе реабилитации и предназначенные для реактивации групп активных мышц с функциональной недостаточностью. Могут быть использованы в межзапястных, локтевых, плечевых, голеностопных и коленных суставах.
  • Противозачаточные спиральки, которые после введения приобретают функциональную форму под воздействием температуры тела.
  • Фильтры для введения в сосуды кровеносной системы. Вводятся в виде прямой проволоки с помощью кататера, после чего они приобретают форму фильтров, имеющих заданную локацию.
  • Зажимы для защемления слабых вен.
  • Искусственные мышцы, которые приводятся в действие электрическим током.
  • Крепежные штифты, предназначенные для фиксации протезов на костях.
  • Искусственное удлинительное приспособление для так называемых растущих протезов у детей.
  • Замещение хрящей головки бедренной кости. Заменяющий материал становится самозажимным под действием сферической формы (головки бедренной кости).
  • Стержни для коррекции позвоночника при скалиозе.
  • Временные зажимные фиксирующие элементы при имплантации искусственного хрусталика.
  • Оправа для очков. В нижней части, где стекла крепятся проволокой. Пластиковые линзы не выскальзывают при охлаждении. Оправа не растягивается при протирке линз и длительном использовании. Используется эффект сверхупругости .
  • Ортопедические имплантаторы.
  • Проволока для исправления зубного ряда.

Тепловая сигнализация

  • Пожарная сигнализация.
  • Противопожарные заслонки.
  • Сигнальные устройства для ванн.
  • Сетевой предохранитель (защита электрических цепей).
  • Устройство автоматического открывания-закрывания окон в теплицах.
  • Бойлерные баки тепловой регенерации.
  • Пепельница с автоматическим стряхиванием пепла.
  • Электронный контактор.
  • Система для предотвращения выхлопа газов, содержащих пары топлива (в автомобилях).
  • Устройство для удаления тепла из радиатора.
  • Устройство для включения противотуманных фар.
  • Регулятор температуры в инкубаторе.
  • Ёмкость для мытья теплой водой.
  • Регулирующие клапаны охлаждающих и нагревательных устройств, тепловых машин.

Другие применения

  • Фирма «Фокусу Боро», Япония использует никелид титана в приводных устройствах самописцев. Входной сигнал самописца преобразуется в электрический ток, которым нагревается проволока из никелида титана . За счет удлинения и сокращения проволоки приводится в движение перо самописца. С 1972 года изготовлено несколько миллионов таких узлов (данные на конец XX века). Так как механизм привода очень прост, поломки случаются крайне редко.
  • Электронная кухонная плита конвекционного типа. Для переключения вентиляции при микроволновом нагреве и нагреве циркуляционным горячим воздухом используется датчик из никелида титана .
  • Чувствительный клапан комнатного кондиционера. Регулирует направление ветра в продувочном отверстии кондиционера, предназначенного для охлаждения и отопления.
  • Кофеварка. Определение температуры кипения, а также для включения-выключения клапанов и переключателей.
  • Электро-магнитный кухонный комбайн. Нагрев производится вихревыми токами, возникающими на дне кастрюли под действием магнитных силовых полей. Чтобы не обжечься, появляется сигнал, который приводится в действие элементом в виде катушки из никелида титана.
  • Электронная сушилка-хранилище. Приводит в движение заслонки при регенерации обезвоживающего вещества.
  • В начале 1985 года формозапоминающие сплавы, исползуемые для изготовления каркасов бюстгальтеров, стали с успехом завоевывать рынок. Металлический каркас в нижней части чашечек состоит из проволоки из никелида титана. Здесь используется свойство сверхупругости. При этом нет ощущения присутствия проволоки, впечатление мягкости и гибкости. При деформации (при стирке) легко восстанавливает форму. Сбыт - 1 млн. штук в год. Это одно из первых практических применений материалов с памятью формы .
  • Изготовление разнообразного зажимного инструмента.
  • Герметизация корпусов микросхем.
  • Высокая эффективность превращения работы в тепло при мартенситных превращениях (в никелиде титана ) предполагает использование таких материалов не только как высокодемпфирующих, но и в качестве рабочего тела холодильников и тепловых насосов.
  • Свойство сверхупругости используется для создания высокоэффективных пружин и аккумуляторов механической энергии.

Литература

  • В. А. Лихачев и др. «Эффект памяти формы», Л., 1987 г.
  • А. С. Тихонов и др. «Применение эффекта памяти формы в современном машиностроении», М., 1981 г.
  • В. Н. Хачин «Память формы», М., 1984 г.

Долгое время неупругую деформацию считали полностью необратимой. В начале 1960-х гг. был открыт обширный класс металлических материалов, у которых элементарный акт неупругой деформации осуществляется за счет структурного превращения. Такие материалы обладают обратимостью неупругой деформации. Явление самопроизвольного восстановления формы - эффект памяти формы (ЭПФ) - может наблюдаться как в изотермических условиях, так и при температурных изменениях. При тепло- сменах такие металлические материалы могут многократно обратимо деформироваться.

Способность к восстановлению деформации не может быть подавлена даже при высоком силовом воздействии. Уровень реактивных напряжений некоторых материалов с ЭПФ может составлять 1 000... 1 300 МПа.

Металлы, обладающие ЭПФ, относятся к числу наиболее ярких представителей материалов со специальными свойствами. Повышенный интерес к этому металлургическому феномену обусловлен уникальным сочетанием высоких обычных механических характеристик, сопротивления усталости, коррозионной стойкости и необычных свойств, таких как термомеханическая память, реактивное напряжение, основанных на термоупругом мартенситном превращении. Особенностью сплавов с ЭПФ является ярко выраженная зависимость большинства свойств от структуры. Значения физико-механических характеристик меняются в несколько раз при обратимом фазовом переходе аустенит-мартенсит для разных сплавов обычно в интервале температур -150...+ 150 °С.

Из большого числа сплавов с ЭПФ наиболее перспективными для практического применения являются сплавы Ti-Ni экви- атомного состава (равного числа атомов), обычно называемые ни- келидом титана или нитинолом. Реже используют более дешевые сплавы на основе меди Си-AI-Ni и Си-А1-Zn.

Эффект памяти формы состоит в том, что образец, имеющий определенную форму в аустенитном состоянии при повышенной температуре, деформируют при более низкой температуре мартенситного превращения. После перегрева, сопровождающегося протеканием обратного превращения, исходная характерная форма восстанавливается. Эффект памяти формы проявляется в сплавах, характеризующихся термоупругим мартенситным превращением, когерентностью решеток исходной аустенитной и мартенситной фаз, сравнительно небольшим гистерезисом превращения, а также малыми изменениями объема при превращениях. В никелиде титана объемные изменения составляют около 0,34%, что на порядок меньше, чем в сталях (около 4 %).

Сплавы с ЭПФ часто относят к так называемым интеллектуальным материалам, позволяющим создавать принципиально новые конструкции и технологии в разных отраслях машиностроения, авиакосмической и ракетной техники, приборостроения, энергетики, медицины и др. Рассмотрим некоторые объекты применения сплавов с ЭПФ.

Освоение ближнего и дальнего космоса связано с созданием орбитальных станций и крупным космическим строительством. Необходимо сооружение таких громоздких объектов, как солнечные батареи и космические антенны. На рис. 1.1 приведена схема космического аппарата с саморазворачивающимися элементами. Антенны состоят из листа и стержня из сплава Ti-Ni, которые свернуты в виде спирали и помещены в углубление в искусственном спутнике. После запуска спутника и выведения его на орбиту антенна нагревается с помощью специального нагревателя или теплоты солнечного излучения, в результате чего она выходит в космическое пространство.

Для размещения различных технических объектов, жилых и производственных модулей необходимо строительство в условиях открытого космического пространства больших платформ. Доставка в открытый космос громоздких агрегатов технически возможна только по частям с последующими монтажными работами. Используемые в массовом производстве способы соединения деталей, такие как сварка, пайка, склеивание, клепка и другие, не-

Рис. 1.1.

/ - антенна; 2 - солнечная батарея; 3 - излучатель энергии; 4 - механический стабилизатор

Рис. 1.2. Соединение трубчатых деталей (/) с помощью муфты (2) из металла с памятью формы: о - до сборки; б - после нагрева

пригодны в космических условиях. Особые требования предъявляют к обеспечению исключительно высокой безопасности.

С учетом этих особенностей в нашей стране была создана уникальная технология соединения элементов в открытом космосе с использованием муфты из сплава ТН-1. Эта технология была успешно использована при сборке конструкции фермы из алюминиевых сплавов общей длиной 14,5 м и поперечным сечением в виде квадрата со стороной 0,5 м.

Ферма состояла из отдельных трубчатых деталей / диаметром 28 мм, которые соединялись между собой с помощью муфты 2 из металла с памятью формы (рис. 1.2). Муфту с помощью дорна деформировали при низкой температуре таким образом, чтобы ее внутренний диаметр был больше наружного диаметра соединяемых элементов. После нагрева выше температуры обратного мартенситного превращения внутренний диаметр муфты восстанавливался до того диаметра, который муфта имела перед расширением. При этом генерировались значительные обжимающие реактивные усилия, соединяемые элементы пластически деформировались, что обеспечивало их прочное соединение. Сборка фермы и установка ее на астрофизическом модуле «Квант» орбитального комплекса «Мир» была произведена в 1991 г. всего за четыре выхода в открытый космос и заняла в общей сложности около суток.

Эти же принципы строительства могут быть использованы для монтажа на больших глубинах крупногабаритных морских подводных конструкций.

Муфты для термомеханического соединения труб применяют во многих конструкциях (рис. 1.3). Их используют для соединения трубопроводов гидросистем реактивного истребителя F-14, причем каких-либо аварий, связанных с утечкой масла, не отмечено. Достоинством муфт, изготовленных из сплавов с памятью формы, помимо их высокой надежности, является отсутствие высокотемпературного нагрева (в отличие от сварки). Поэтому свойства материалов вблизи соединения не ухудшаются. Муфты такого

Рис. 1.3. Соединение труб с использованием эффекта памяти формы:

а - введение труб после расширения муфты; б - нагрев

типа применяются для трубопроводов атомных подводных и надводных кораблей, для ремонта трубопроводов для перекачки нефти со дна моря, причем для этих целей используют муфты большого диаметра - порядка 150 мм. В некоторых случаях для изготовления муфт применяют также сплав Си-Zn-А1.

Для неподвижного соединения деталей обычно применяются заклепки и болты. Однако, если невозможно осуществлять какие- либо действия на противоположной стороне скрепляемых деталей (например, в герметичной пустотелой конструкции), выполнение операций крепления вызывает трудности.

Стопоры из сплава с эффектом памяти формы позволяют в этих случаях осуществить крепление с использованием пространственного восстановления формы. Стопоры изготавливают из сплава с эффектом памяти формы, причем в исходном состоянии стопор имеет раскрытый торец (рис. 1.4, а). Перед осуществлением операции крепления стопор погружается в сухой лед или жидкий воздух и в достаточной степени охлаждается, после чего торцы стопора выпрямляются (рис. 1.4, б). Стопор вводится в неподвижное отверстие для крепления (рис. 1.4, в ), при повышении температуры до комнатной происходит восстановление формы, торцы штифта расходятся (рис. 1.4, г), и операция крепления завершается.

Использование сплавов с памятью формы в медицине представляет особый интерес. Их применение открывает широкие воз-


Рис. 1.4. Принцип действия стопора с эффектом памяти формы можности создания новых эффективных методов лечения. Сплавы, используемые в медицине, должны обладать не только высокими механическими характеристиками. Они не должны подвергаться коррозии в биологической среде, должны обладать биологической совместимостью с тканями человеческого организма, обеспечивать отсутствие токсичности, канцерогенности, оказывать сопротивление образованию тромбов, сохраняя эти свойства в течение длительного времени. Если имплантируемый орган, изготовленный из металла, является активным относительно биологической структуры, то происходит вырождение (мутация) биологических клеток периферийной структуры, воспалительный прилив крови, нарушение кровообращения, затем омертвление биологической структуры. Если имплантируемый орган инертен, то вокруг него возникает волокнистая структура, обусловленная коллагенными волокнами, образующимися из волокнистых зародышевых клеток. Имплантируемый орган покрывается тонким слоем этой волокнистой структуры и может стабильно существовать в биологических организмах.

Специальные эксперименты, проведенные на животных, показали, что сплавы на основе системы Ti-Ni имеют биологическую совместимость на уровне и даже выше обычно применяемых коррозионно-стойких сталей и кобальтохромовых сплавов и могут быть использованы в качестве функциональных материалов в биологических организмах. Использование сплавов с ЭПФ для лечения показало их хорошую совместимость с тканями и отсутствие реакций отторжения биологическими структурами человеческого организма.

Коррекция позвоночника. Различные искривления позвоночника, как врожденные, так и обусловленные привычкой или болезненным состоянием, приводят к сильной деформации при ходьбе. Это не только вызывает сильную боль, но и оказывает вредное влияние на внутренние органы. При ортопедической хирургической операции коррекцию позвоночника обычно осуществляют с помощью стержня Харинтона, изготавливаемого из коррозионно-стойкой стали. Недостатком этого метода является уменьшение во времени первоначального корректирующего усилия. Через 20 мин после установки корректирующая сила уменьшается на 20 %, а через 10-15 дней - до 30 % от первоначальной. Дополнительное корректирование усилия требует повторных болезненных операций и не всегда достигает цели. Если для стержня Харинтона применить сплав с ЭПФ, то установить стержень можно 1 раз, а необходимость в повторной операции отпадает. Если после операции стержень Харинтона нагреть до температуры, несколько превышающей температуру тела, то можно создать необходимую корректирующую силу. Эффективны для этой цели сплавы на основе Ti-Ni с добавками Си, Fe и Мо, проявляющие после восстановления формы высокую эластичность в интервале температур

Корректирующие устройства с такими сплавами создают постоянное по величине напряжение воздействия на позвоночник в течение всего периода лечения независимо от смещения точек опоры устройства.

Пластинка для соединения кости. Методы медицинской помощи в случае костных переломов заключаются в том, чтобы с помощью пластинок из коррозионно-стойкой стали или сплавов Со- Сг зафиксировать зону перелома в таком состоянии, когда на кость действует сила сжатия.

Если для соединительной пластины применить сплав с эффектом памяти формы, то становится возможной прочная фиксация зоны перелома путем внешнего нагрева пластинки до температуры несколько выше температуры тела после операции, при этом отпадает необходимость осуществлять продольное сжатие кости во время операции.

Внутрикостные шпильки. Такие шпильки применяются при оказании медицинской помощи при переломах большой берцовой кости. Причем шпильки, главным образом из нержавеющей стали, вводят до костного мозга, тем самым фиксируя кость. При применении этого метода кость фиксируется за счет упругих свойств коррозионно-стойкой стали, поэтому необходимо ввести шпильку большего диаметра, чем диаметр отверстия, для создания большой степени деформации. В этой связи существует риск повредить ткани в зоне, в которую вводится шпилька.

Хирургическая операция упрощается при использовании для шпилек сплавов с эффектом памяти формы на основе Ti-Ni. Предварительно охлажденные шпильки восстанавливают исходную форму при температуре тела, что увеличивает степень фиксации.

Устройства для скелетного вытяжения. Используется свойство материала при восстановлении формы создавать в заданном температурном интервале значительные напряжения.

Устройства применяют для эффективного лечения переломов костей путем как постоянного, так и дискретного скелетного вытяжения.

Проволока для исправления положения зубов. Для исправления положения зубов, например неправильного прикуса, применяют проволоку из коррозионно-стойкой стали, создающую упругое усилие.

Недостаток корректирующей проволоки - малое упругое удлинение и, как следствие, пластическая деформация. При изготовлении проволоки из сплава Ti-Ni даже при упругой деформации 10% пластическая деформация не возникает, и оптимальная корректирующая сила сохраняется.

Технический прогресс связан с непрерывным ростом потребления электроэнергии. Ограниченность запасов органического топлива, преодоление энергетического кризиса и приемлемая стоимость производства электроэнергии обусловили необходимость использования атомной энергии и широкомасштабного строительства атомных электростанций (АЭС) во всех развитых странах мира. Ядерная энергетика - это энергетика будущего.

По принципу действия АЭС и тепловые электростанции (ТЭС) мало отличаются друг от друга. На АЭС и ТЭС вода доводится до кипения и образующийся пар подается на лопасти высокоскоростной турбины, заставляя ее вращаться. Вал турбины соединен с валом генератора, который при вращении вырабатывает электрическую энергию. Различие АЭС и ТЭС состоит в способе нагрева воды до кипения. Если в ТЭС для нагрева воды сжигается уголь или мазут, то в АЭС для этой цели используют тепловую энергию управляемой цепной реакции деления урана.

Для выработки электроэнергии в настоящее время в большинстве стран применяют легководные реакторы (LWR). Реакторы этого типа имеют две модификации: реакторы с водой под давлением (PWR) и кипящие реакторы (BWR), из которых имеют большее распространение реакторы с водой под давлением.

На рис. 1.5 представлена схема АЭС, оборудованной легководным реактором (с водой, находящейся под давлением). В корпусе реактора 9 находятся активная зона 10 и первый контур. В первом контуре циркулирует вода, являющаяся теплоносителем и замед-


Рис. 1.5. Схема передачи теплоты между элементами станции PWR:

1 - бетонная оболочка; 2 - оболочка из коррозионно-стойкой стали; 3 - турбина; 4 - генератор; 5 - градирня; 6 - конденсатор; 7 - парогенератор; 8 - циркуляционный насос; 9 - корпус реактора; 10 - активная зона; 11 - компенсатор давления; 12 - контейнер лителем. Вода отводит теплоту от активной зоны к теплообменной (парогенератору 7), где теплота передается второму контуру, в котором вырабатывается пар. Преобразование энергии происходит в генераторе 4, где пар используется для выработки электроэнергии. Первый контур со всеми трубопроводами и компонентами заключен в специально созданный контейнер 12. Таким образом, любые радиоактивные продукты деления, которые могут выйти из топлива в воду первого контура, изолируются от окружающей среды.

В первом контуре вода находится под давлением 15,5 МПа и при максимальной температуре 315 °С. Эти условия предохраняют воду от кипения, поскольку точка кипения воды при давлении 15,5 МПа значительно выше 315 °С.

В каждом реакторе 16-25 ячеек (в зависимости от конструкции) оставлены свободными для регулирующих стержней. Они перемещаются с помощью управляющего стержня, проходящего через крышку корпуса реактора. Пар, выходящий из турбины 3, конденсируется в водоохлаждаемом конденсаторе 6, в котором сбрасывается оставшаяся тепловая энергия. В некоторых системах охлаждения используются градирни.

Стоимость оборудования станции, осуществляющего выработку и передачу энергии (корпус реактора, теплообменники, насосы, емкости, трубопроводы) составляет около 90% от стоимости станции. Оборудование должно быть правильно сконструировано и изготовлено из экономичных, но гарантированно надежных материалов.

Ядерная энергетика предъявляет повышенные требования к используемым конструкционным материалам, технологии их производства и контролю работоспособности. Конструкционные материалы под действием облучения испытывают структурные превращения, оказывающие отрицательное влияние в первую очередь на механические свойства и коррозионную стойкость. Из всех видов облучения (нейтроны, а- и р-частицы, у-излуче- ние) наиболее сильное влияние оказывает нейтронное облучение.

Радиационно стойкими материалами называют материалы, сохраняющие стабильность структуры и свойств в условиях нейтронного облучения (табл. 1.11).

Скорость коррозии сплавов на основе алюминия в водной среде в условиях облучения возрастает в 2-3 раза. Аустенитные хромоникелевые стали во влажном паре подвержены межкристаллической коррозии и коррозионному растрескиванию.

Наиболее опасным следствием облучения является радиационное распухание. На рис. 1.6 представлены характеристики радиационного распухания ряда марок сталей и сплавов. Распухания можно подавить путем структурно-принудительной рекомбинаТаблица 1.11

Воздействие нейтронного облучения на различные материалы

Интегральный поток быстрых нейтронов, нейтрон/см 2

Материал

Воздействие облучения

Политетрафторэтилен, пол и метилметакрилат и целлюлозы

Снижение эластичности

Органические

жидкости

Газовыделен ие

Увеличение предела текучести

Полистирол

Снижение прочности при растяжении

Керамические

материалы

Уменьшение теплопроводности, плотности, кристалличности

Пластмассы

Непригодны для использования в качестве конструкционного материала

Углеродистые

Значительное снижение пластичности, удвоение предела текучести, повышение перехода от вязкого разрушения к хрупкому

Коррозионно- стойкие стали

Трехкратное увеличение предела текучести

Алюминиевые

Снижение пластичности без полного охрупчивания

ции металлов за счет непрерывного распада твердого раствора с определенной дилатацией на границе матрицы с образующейся вторичной фазой. Возникающие при распаде сильные поля структурных напряжений способствуют рекомбинации радиационных дефектов и существенно снижают распухание. Развитое дисперсионное твердение является способом подавления радиационного распухания.

Радиационная стойкость реакторных материалов может быть достигнута при выполнении комплекса условий. К ним относятся


Рис. 1.6.

V - объем; ДР - изменение объема

оптимальные химический состав и структура материалов, условия их эксплуатации: уровни рабочей температуры, нейтронного потока и свойства коррозионной среды.

Эффект заключается в способности ненагруженного материала под воздействием внешнего напряжения и изменения температуры накапливать деформацию (10–15%), обратимую либо при нагреве, либо в процессе снятия внешнего напряжения (сверхэластичность). Деформация может накапливаться при активном нагружении, а также при изменении температуры сплава, находящегося под воздействием одноосного или сдвигового напряжения. Типичный рабочий цикл для такого материала представлен на рисунке 1. Деформация на этапе б–в (рисунок 1) накапливается за счет переориентации кристаллов мартенсита (эффект мартенситной неупругости) и остается после снятия нагрузок. Эффект памяти формы проявляется на этапе в–г (рисунок 1), где материал самостоятельно восстанавливает свою форму и может развить значительные усилия.

Рисунок 1 – Схема деформирования стержня с эффектом памяти формы (а–г) и зависимость объемной доли мартенсита q от температуры Т (д) .

К сплавам с памятью формы, кроме никелида титана, относятся AuCd, Cu–Al–Zn, AgCd и др. В основе эффекта памяти формы лежат мартенситные превращения, для которых типичны слабая зависимость температур начала и окончания превращения от скорости изменения температуры, чаще всего обратимый характер превращения, заметное несовпадение (гистерезис) температур прямой и обратной реакции и другие признаки. Высокотемпературную модификацию принято называть аустенитом, а низкотемпературную – мартенситом (рисунок 1). Температуры мартенситных превращений сильно зависят от химического состава сплавов, их термической и механической обработки. Например, характеристические температуры никелида титана лежат в пределах 30–80°С, редко выходя за этот интервал, однако легирование железом снижает их примерно на 150–200°С, то есть до –170 … –70°С.

Кинетика мартенситных превращений имеет ярко выраженный гистерезис (рисунок 1 д). Если материал охлаждать из аустенитного состояния, то вначале каких-либо фазовых преобразований не происходит. Однако, начиная с некоторой характеристической температуры, которую принято обозначать M s , появляются первые кристаллы мартенсита, следовательно, увеличивается и доля мартенситной фазы в объеме материала. По мере дальнейшего охлаждения их размеры и количество увеличиваются, пока кристаллы не заполнят при температуре M f весь объем. Такое превращение называется прямым и при наличии внешней нагрузки сопровождается появлением большой деформации (эффект пластичности превращения). При последующем нагреве, начиная с температуры A s , мартенсит начинает переходить в аустенит. При этом накопленная деформация начинает медленно исчезать, до тех пор, пока температура не станет выше A f и произойдет восстановление формы.

Такие сплавы используются в качестве биомедицинских имплантатов: стентов, ортодонтических проволок, фильтров, фиксаторов, скобок для остеосинтеза, пластинок и т.д. .

При применении сплавов с ЭПФ в медицине необходимо, чтобы они обеспечивали не только надежность выполнения механических функций, но и химическую надежность (сопротивление ухудшению свойства в биологической среде, сопротивление разложению, растворению, коррозии), биологическую надежность (биологическую совместимость, отсутствие токсичности, канцерогенности, сопротивление образованию тромбов и антигенов). Простые металлические элементы имеют сильное токсичное действие, но в соединении с другими элементами обнаруживается эффект взаимного ослабления токсичности. Однако большее значение, чем образование ионов, имеет растворимость пассивирующих пленок, возникающих на поверхности металлов. Например, используемые в качестве биологических материалов хромоникелевые сплавы, кобальтхромовые сплавы, чистый Ti, сплав Ti–6Al–4V [% (ат.)] содержат элементы, имеющие сильное токсичное действие в виде простых элементов, но пассивирующие пленки, образующиеся в контакте с биологическими организмами, являются достаточно стабильными .

Каждый металл и сплав имеет свою кристаллическую решетку, архитектура и размеры ко-
торой строго заданы. У многих металлов с изменением температуры, давления решетка не
остается одной и той же и наступает момент, когда происходит ее перестройка. Такая смена
типа кристаллической решетки - полиморфное превращение - может осуществляется двумя
способами:
1) при высокой температуре за счет диффузии при высокой подвижности атомов;
2) при низкой температуре за счет коллективного, согласованного перемещения атомов, что
приводит к изменению формы объема сплава (бездиффузионное сдвиговое термоупругое мар-
тенситовое превращение с образованием новой кристаллической решетки - мартенсита).
При высокой температуре в аустенитном состоянии сплав имеет кубическую решетку.
При охлаждении сплав переходит в мартенситную фазу, в которой ячейки решетки становят-
ся скошенными параллепипедами. При нагреве аустенитная фаза восстановливается, а с ней
восстановливается и первоначальная форма изделия из сплава с «памятью» формы.
Мартенситное превращение - один из фундаментальных способов перестройки кристал-
лической решетки в отсутствии диффузии, характерный для сталей, чистых металлов, цветных
сплавов, полупроводников, полимеров.
Эффект «памяти» - восстановление первоначальной формы и размеров кристаллов после
их изменения при деформировании в результате термоупругого мартенситового превращения
при термообработке по определенному режиму.
Изменение формы - главная особенность мартенситного превращения, с которой связан эф-
фект «памяти» сплавов, условие необходимое, но недостаточное для проявления «памяти».
Свободная энергия кристаллов мартенсита меньше, чем исходной фазы, что стимулирует
развитие мартенситного перехода. Переход тормозится из-за возникновения границы раздела
старой и новой фаз и повышения свободной энергии. Растущие кристаллы мартенситной фазы
деформируют окружающий объем, который сопротивляется этому. Возникает упругая энергия,
препятствующая дальнейшему росту кристаллов. Когда эта энергия превышает предел упру-
гости, происходит интенсивная деформация материала в окрестности границы раздела фаз и
рост кристаллов прекращается. В сталях процесс проходит практически мгновенно (отдельные
кристаллы мартенсита вырастают до конечных размеров).
Обратный переход мартенсита в аустенит (высокотемпературная фаза, бездиффузионная
сдвиговая перестройка решетки затруднена), идет при высоких температурах, когда в мартен-
сите растут кристаллы аустенита без перехода к исходной форме (атомы не попадают на свои
прежние места).
В сплавах с «памятью» при охлаждении мартенситные кристаллы растут медленно, при
нагреве исчезают постепенно, что обеспечивает динамическое равновесие границы раздела
между ними и исходной фазы. Граница между фазами ведет себя аналогично, если охлаж-
дение и нагрев заменить соответственно приложением и снятием нагрузки - термоупругое
равновесие фаз в твердом теле.
Термоупругое мартенситное превращение сопровождается обратимым изменением формы
кристаллов аустенита, что, в основном, обеспечивает «память» металлов.
56 Интеллектуальные полимерные материалы (ИПМ)
Прямым следствием термоупругого мартенситового превращения является обратимое
изменение формы твердого тела в результате периодического охлаждения и нагрева (тепловой
двигатель). Металлы с «памятью» (например, нитинол), «вспоминают» свою первоначальную
форму при нагреве после предварительного деформирования образца .
К концу 1960-х гг. сформировалась область физических исследований и технических
применений эффекта «памяти» формы в сплавах.
Существуют сотни сплавов с мартенситным превращением, но число сплавов, где эффект
«памяти» формы имеет практическое значение, незначительно. Коллективное перемещение
атомов в определенном направлении, сопровождающееся самопроизвольной (мартенсит-
ной) деформацией материала (перестройка решетки), при которой соседство и межатомные
связи атомов не нарушаются (сохраняется возможность вернуться на прежние позиции,
к исходной форме), проходит только при определенных условиях. «Память» отдельного
кристалла - это еще не память всего объема сплава, который обычно имеет поликристал-
лическое строение.
Отдельные кристаллиты (зерна) отличаются ориентацией кристаллических решеток.
Сдвиг атомов при мартенситном превращении происходит в решетке по определенным плос-
костям и направлениям. Из-за различной ориентации зерен сдвиги в каждом зерне проходят
в различных направлениях и, несмотря на значительную деформацию отдельных кристаллов,
образец в целом не испытывает заметного изменения формы. Оно происходит в том случае,
если кристаллы ориентированы в одном направлении. Управляющей силой, которая при мар-
тенситном превращении организует преимущественную организацию кристаллов, является
внешняя нагрузка.
При мартенситном превращении атомы перемещаются в направлении действия внешней
нагрузки (образец в целом испытывает деформацию). Процесс развивается до тех пор, пока
весь материал не продеформируется в направлении действия силы без разрыва межатомных
связей и нарушения соседства атомов. При нагреве они возвращаются на исходные позиции,
восстанавливая первоначальную форму всего объема материала.
Эффект «памяти» основан на термоупругом равновесии фаз и управляющем действии
нагрузки. Специальная термомеханическая обработка сплавов создает в материале микро-
напряжения, действия которых при мартенситных переходах аналогично действию внешней
нагрузки. При охлаждении сплав самопроизвольно принимает одну форму, при нагреве
возвращается к исходной (пластина сворачивается в кольцо при охлаждении, при нагреве -
разворачивается или наоборот).
Материалы с памятью формы могут проявлять сверхпластичность (значительные де-
формации, когда мартенситное превращение вызывается приложением внешней нагрузки, а
не охлаждением, что используется при создании пружинных амортизаторов, аккумуляторов
механической энергии), имеют высокую циклическую прочность (не происходит накопление
дефектов структуры) и высокую способность рассеивать механическую энергию (при мартен-
ситных превращениях перестройка кристаллической решетки сопровождается выделением
или поглощением тепла, если внешняя нагрузка вызывает мартенситное превращение, то
механическая энергия переходит в тепловую; при эффектах памяти наблюдается и процесс
превращения тепла в работу).
Изменение формы(при периодическом изменении температуры) металлов с памятью со-
провождается проявлением мощных межатомных сил. Давление при расширении материалов
такого типа достигает 7 т/см2. В зависимости от вида материала изделия различного размера
и конфигурации сгибаются, расширяются, извиваются (форму можно программировать).
К металлам с памятью формы относятся сплавы нитинол, нитинол-55 (с железом), никелид
титана ВТН-27, сплавы титана ВТ-16, ВТ23 (термообработка по специальному режиму, в 2–3
раза дешевле и в 1,5 раза легче никелида титана), сплав на основе титана с 28–34% марганца и
5–7% кремния, терфенол (магнитострикционный сплав, гасит колебания при низкочастотных
вибрациях).
Интеллектуальные полимерные материалы (ИПМ) 57
Сплавы на основе марганца имеют температурный интервал максимальной термочувс-
твительности при 20–40 °С и восстанавливают заданную форму в интервале температур от
–100 до 180 °С
Методом порошковой металлургии получены (Fukuda Metal Co.) сплавы системы Cu-Zn-
Al с эффектом памяти формы спеканием (700 МПа, 900 °С, 0,1 %масс. фторида алюминия
порошков сплавов Cu-Zn (70:30), Cu-Al (50:50) и меди (размер зерен 20–100 мкм). Сплав
восстанавливает форму после растяжения на 10%.
При охлаждении сплав переходит в мартенситную фазу, в которой благодаря изменившим-
ся геометрическим параметрам ячеек кристаллической решетки становится пластичным и при
механическом воздействии изделию из сплава с «памятью» (нитинола и др.) можно придать
практически любую конфигурацию, которая будет сохраняться до тех пор, пока температура не
превысит критическую, при которой мартенситная фаза становится энергетически невыгодной,
сплав переходит в аустенитную фазу с восстановлением исходной формы изделия. Однако,
деформации не должны превышать 7–8%, иначе форма не восстановливается полностью.
Разработаны нитиноловые сплавы, которые «помнят» одновременно форму изделий,
соответствующих высоким и низким температурам. Эффект памяти в нитиноловых сплавах
четко выражен, причем диапозон температур можно точно регулировать в интервале от не-
скольких градусов до десятков градусов, вводя в сплавы модифицирующие элементы, однако
запас цикличности, количество управляемых деформаций (итераций) не превышает 2000,
после чего сплавы утрачивают свои свойства.
Токопроводящие волокна, сформированные из филаментов диаметром 50 мкм сплавов
с наночастицами титана и никеля, изменяют длину на 12–13% в течение 5 млн итераций и
используются в искусственных мышцах. Наномускул (Nano Muscle Actuator, фирма Nano
Muscle, США, Johnson Electric, KHP, 2003 г.) развивает мощность в тысячу раз больше, чем
человеческие мышцы и в 4000 раз больше, чем электродвигатель, при скорости срабатывания
0,1 секунды с плавным переходом из одного состояния в другое с заданной скоростью (мик-
ропроцессорное управление).
Разработаны материалы с магнитомеханической памятью (магнитоупругий мартенситный
переход стимулируется магнитным полем непосредственно или в сочетании с температурой
и нагрузкой) и электромеханической памятью (мартенситное превращение сопровождается
качественным изменением свойств, переходы проводник–полупроводник, парамагнетик–фер-
ромагнетик), что перспективно для создания актюаторов ИМ радиотехнического назначения
для снижения радиолокационной заметности.

У некоторых сплавов обнаружено удивительное свойство: помнить свою форму. Работы по изучению и применению таких сплавов ведутся во многих странах. Пружину сжали, а потом отпустили, она тут же вернулась в исходное состояние. То же самое произойдет с изогнутой стальной линейкой, растянутым куском резины... Материал во всех этих случаях восстанавливает свои первоначальные размеры и форму. Это кажется естественным и никого не удивляет. Но так происходит только в пределах упругой деформации. Если же превысить предел упругости материала, наступит пластическая деформация. Теперь, после снятия нагрузки, исходную форму сам он не примет, для этого необходимо продеформировать материал в противоположном направлении. Таковы были общепринятые, привычные представления.

Сравнительно недавно исследователи обнаружили сплавы, которые и после пластической деформации оказались способными «вспоминать» свою первоначальную форму. Представьте себе, что кусок проволоки из такого сплава изогнут так, что он принял форму слова «ПАМЯТЬ». После этого проволока может быть смята. Но стоит ее слегка нагреть, как она снова самостоятельно «напишет» слово «ПАМЯТЬ». Естественно, такие опыты удивляют и воспринимаются скорее как фокус.

Исследование феноменального свойства металлов показало, что его механизм определяется весьма тонкими процессами, происходящими с кристаллической решеткой, в частности явлением, которое получило название «термоупругое равновесие фаз в твердом теле». Сначала оно было предсказано теоретически действительным членом АН УССР Г. В. Курдюмовым, а затем им и его сотрудником Л. Г. Хандросом установлено экспериментально.

Даже популярное изложение существа проблем, связанных с эффектом памяти формы в сплавах, предполагает наличие некоторого обязательного объема сведений из области металловедения.

Мартенситное превращение

Каждый металл и сплав имеет свою кристаллическую решетку, архитектура и размеры которой строго заданы. Но у многих металлов с изменением температуры, давления решетка не остается одной и той же: наступает момент, когда происходит ее перестройка. Такая смена типа кристаллической решетки - полиморфное превращение - может осуществляться двумя способами.

Для наглядности представим себе решетку в виде здания, сложенного из детских кубиков. Как теперь из этих же кубиков (атомов) построить здание другой архитектуры («произвести» полиморфное превращение)? Ответ очевиден: разобрать старое здание и сложить новое. Конечно, теперь каждый кубик может оказаться в любом месте нового здания, в окружении уже других соседей. Это понятно, ведь при перестройке путь любого кубика индивидуален - никак не связан с другими. Именно по такой схеме и происходит перестройка решетки, если подвижность атомов - диффузия - достаточно высока, чтобы обеспечить их перемещение на новые места. Это возможно, когда полиморфное превращение происходит при высокой температуре.

А как произойдет перестройка решетки в тех случаях, когда температура полиморфного превращения низка? С энергетических позиций решетка высокотемпературной модификации обязательно должна перестроиться, но диффузия атомов практически отсутствует, так как энергия их тепловых колебаний недостаточна для отрыва от соседей. Значит, должен существовать другой, бездиффузионный способ?

Действительно, такой способ был обнаружен при изучении одного из древнейших процессов термической обработки стали - закалки. В результате ее образуется фаза с новой кристаллической решеткой - мартенсит; соответственно способ перестройки решетки получил название мартенситного превращения.

В дальнейшем оказалось, что мартенситное превращение - это вообще один из фундаментальных способов перестройки кристаллической решетки. Он характерен не только для сталей, но и для чистых металлов, цветных сплавов, полупроводников, полимеров всегда, когда перестройка решетки вынуждена происходить в отсутствие диффузии.

Каковы же особенности перестройки решетки при таком, бездиффузионном способе превращения? Вернемся к нашей модели с кубиками. Теперь старое здание разобрать на кубики не удастся - диффузия отсутствует. Остается одна возможность: не отрывая кубики друг от друга (не разрушая межатомные связи), перемещать их целыми кооперативами, практически одновременно из старых положений в новые. Ясно, что такое коллективное, согласованное перемещение носит характер сдвига (поэтому мартенситное превращение называют иногда сдвиговым).

Кооперативный сдвиг атомов неизбежно приводит к изменению формы объема сплава. Изменение формы - это главная особенность мартенситного превращения.

Именно с ней связан эффект памяти сплавов. Но не следует думать, что любой сплав, претерпевающий мартенситное превращение, обладает памятью. Как станет ясно из дальнейшего, изменение формы при таком превращении - это условие необходимое, но еще недостаточное для проявления памяти.

В многолетней истории изучения мартенситных превращений можно выделить три ключевых события, которые оказали непосредственное влияние на формирование нового неумного направления, занимающегося изучением и применением эффекта памяти формы в сплавах.

Событие первое . В 1949 году в журнале «Доклады Академии наук СССР» появилась статья Г. В. Курдюмова и Л. Г. Хандроса «О термоупругом равновесии при мартенситных превращениях». Ее авторы в одном из медных сплавов обнаружили ранее неизвестную особенность мартенситного превращения.

Здесь придется обратиться к считавшейся классической картине мартенситного превращения. Свободная энергия рождающихся кристаллов мартенсита меньше, чем исходной фазы. Именно это стимулирует развитие мартенситного перехода. Однако появляются и силы препятствующие. Прежде всего это повышение свободной энергии из-за возникновения границы раздела старой и новой фаз. Кроме того, растущие кристаллы мартенситной фазы вынуждены деформировать окружающую матрицу, которая, конечно, сопротивляется этому. В результате возникает упругая энергия, которая препятствует дальнейшему росту кристаллов. Накопление упругой энергии подобно пружине, сжимающейся по мере роста кристалла. Когда эта энергия превысит предел упругости, происходит как бы разрушение пружины, что вызывает интенсивную деформацию материала в окрестности границы раздела фаз. Рост кристалла прекращается. Этот процесс может происходить исключительно быстро, подобно взрыву, и тогда отдельные кристаллы мартенсита вырастают практически мгновенно до своих конечных размеров. В сталях мартенситное превращение происходит именно так.

Обратный переход мартенсита в аустенит (так называется высокотемпературная фаза стали, из которой он образовался) уже не может произойти по обратному «взрывному» механизму. Пружина была сломана, границы между фазами нарушены, и теперь обратная бездиффузионная, сдвиговая перестройка решетки затруднена. Нужен значительный перегрев сплава, чтобы в недрах мартенсита начали зарождаться и расти кристаллы аустенита. При этом их исходная форма, как правило, не восстанавливается (атомы не попадают на свои прежние места).

Особенность мартенситного превращения, которую наблюдали в медном сплаве, состояла в том, что при его охлаждении мартенситные кристаллы росли медленно, а при нагреве постепенно исчезали. Если продолжить аналогию с пружиной, то можно сказать, что в данном случае она успевает остановить рост кристалла прежде, чем сама разрушится. Кристалл мартенсита оказывается как бы подпружиненным, что и обеспечивает динамическое равновесие границы между ним и исходной фазой: при охлаждении граница смещается в одну сторону, при нагреве - в обратную.

Новое явление получило название термоупругого равновесия фаз в твердом теле.

Термоупругое мартенситное превращение также сопровождается изменением формы, но в данном случае это изменение носит (что очень существенно) обратимый характер: исходная форма кристаллов аустенита восстанавливается. И, как стало ясно в дальнейшем, именно такое превращение в основном и обеспечивает память металлов.

Событие второе . В 1958 году на Всемирной выставке в Брюсселе внимание посетителей привлекало устройство американских ученых Т. Рида и Д. Либермана. Основной его частью был тонкий (диаметром 3 мм) длинный (100 мм) стержень из золото-кадмиевого сплава (66% золота). Одним концом он был жестко закреплен в стойке и находился в горизонтальном положении. На свободный конец стержня подвешивали груз (около 50 г), под тяжестью которого стержень изгибался. Поведение стержня было необычным. Когда от нагревателя к стержню подводили тепло, он выпрямлялся и поднимал груз, но стоило вентилятору охладить стержень, как он снова изгибался и т. д. Это была действующая модель теплового двигателя, у которого твердое рабочее тело из золото-кадмиевого сплава в результате охлаждения и нагрева обратимо меняло форму, что было прямым следствием термоупругого мартенситного превращения.

Так наглядно было продемонстрировано неизвестное ранее у металлов свойство памяти формы.

Событие третье . В начале 60-х годов в одной американской лаборатории в результате поисков материала, который был бы прочным, относительно легким и при этом мог бы работать в агрессивных средах, был создан сплав никеля с титаном (1: 1).

В процессе обработки этот сплав неожиданно проявил свойство, о существовании которого исследователи даже и не подозревали: предварительно деформированный образец при нагреве вспоминал свою первоначальную форму.

Открытие в «рядовом» сплаве уникального свойства (которому именно тогда и дали название «эффект памяти») восприняли как сенсацию.

Эффект проявлялся настолько сильно, что буквально захватывало дух от перспектив его использования. С другой стороны, случайность сделанного открытия не позволила сразу дать правильное объяснение природы эффекта, и это, естественно, сдерживало его широкое практическое применение.

Новый материал нитинол (образован из слов НИкель, ТИтан и НОЛ - сокращенное название лаборатории, где он был получен) и его замечательное свойство памяти стали объектом интенсивного изучения. Но только через несколько лет стало ясно, что и в данном случае память сплава - следствие мартенситного превращения.

Под влиянием всех трех событий к концу шестидесятых годов сформировалась целая область физических исследований и технических применений эффекта памяти формы в сплавах.

Когда каждый кристалл сам по себе

Существуют сотни сплавов с мартенситным превращением. Но далеко не все из них способны вспоминать форму. А сплавов, где этот эффект проявляется настолько сильно, что может иметь практическое значение, вообще известно лишь несколько. В чем же дело?

Как уже говорилось, при мартенситном превращении происходит коллективное перемещение атомов в определенном направлении, сопровождающееся самопроизвольной (мартенситной) деформацией материала. Поскольку при таком способе перестройки решетки соседство и межатомные связи подавляющего большинства атомов не нарушаются, то они сохраняют возможность вернуться на свои прежние места, а материал соответственно к исходной форме.

Но это лишь возможность, и для ее реализации нужны особые условия.

Обратная перестройка структуры в общем случае не обязательно должна происходить путем «попятного» движения атомов. Направлений, которые приводят к исходной архитектуре решетки, может быть несколько. Все определяется сложностью кристаллической решетки мартенсита: чем она сложней, тем меньше этих направлений. Когда решетка мартенсита настолько сложна, что вообще не предоставляет выбора, то остается только один вариант ее обратной перестройки - «попятное» движение атомов на исходные позиции. Только в этом случае мартенситное превращение обеспечивает кристаллу память исходной формы. Именно такое превращение и память у отдельных кристаллов наблюдали в описанном выше событии № 1.

Но память отдельного кристалла - это еще не память всего объема сплава. И вот почему.

Сплав, как правило, имеет поликристаллическое строение, то есть состоит из множества отдельных кристаллитов (зерен), которые отличаются друг от друга ориентацией кристаллических решеток - словно детские кубики, беспорядочно насыпанные в коробку. Поскольку сдвиг атомов при мартенситном превращении происходит в решетке по определенным плоскостям и в определенном направлении, то в силу различной ориентации зерен сдвиги в каждом зерне будут осуществляться в самых разных направлениях. Поэтому после мартенситного превращения, несмотря на значительную деформацию отдельных кристаллов, образец в целом не испытывает заметного изменения формы.

Ясно, что заметное изменение формы всего образца произойдет лишь в том случае, если создать определенный порядок в расположении кристаллов. В идеальном случае - сделать так, чтобы все они были ориентированы в одном направлении.

Именно этого удалось добиться исследователям, демонстрировавшим проявление памяти сплава в событиях № 2 и № 3.

Второе событие (как и третье) отличается от первого тем, что превращение в сплаве происходит с участием внешней нагрузки.

Она и есть та управляющая сила, которая при мартенситном превращении организует преимущественную ориентировку кристаллов.

Как это происходит? В момент перехода при охлаждении, когда атомы должны покинуть свои старые места и занять новые, из всех возможных направлений они выберут только такие, которые совпадают с направлением действия внешней силы. Это естественно, поскольку в противном случае атомам пришлось бы совершать дополнительную работу против внешней нагрузки, что с энергетической точки зрения явно невыгодно. Итак, процесс мартенситного превращения заставляет атомы покинуть свои позиции и отправиться в путь, а внешняя нагрузка задает направление движения.

В результате такого организованного движения атомов образец в целом испытывает деформацию в направлении действия внешней силы. Вспомним, как в событии № 2 при охлаждении стержень изгибался в направлении действия груза. При нагреве, когда атомы вынуждены возвращаться на исходные позиции, происходит восстановление первоначальной формы, даже против действия внешней силы (груза), так как других направлений движения у атомов, кроме обратного, попросту нет.

Интересно, что внешняя нагрузка может управлять движением атомов не только в процессе самого мартенситного превращения, но и после его завершения, как это было в событии № 3. Она способна в этом случае изменить уже сложившуюся ситуацию с хаотически ориентированными кристаллами мартенсита.

Под действием нагрузки увеличивается число кристаллов с мартенситной деформацией, совпадающей по направлению с приложенным усилием. Процесс развивается до тех пор, пока все кристаллы не выстроятся, и образец в целом не продеформируется в направлении действия силы. Подчеркнем еще раз, что это происходит без разрыва межатомных связей и нарушения соседства атомов. Поэтому при нагреве они возвращаются на свои исходные позиции, восстанавливая первоначальную форму всего объема материала.

В данном случае внешняя нагрузка действует на мартенситные кристаллы, подобно магниту на железные опилки, которые выстраиваются в магнитном поле в строго определенном порядке.

Таковы механизмы, благодаря которым реализуемся эффект памяти формы, основанный на термоупругом равновесии фаз и управляющем действии нагрузки.

Эффект, описанный в событии № 3,- по существу, память материала на одну, высокотемпературную свою форму. В событии № 2 наличие внешней силы (груза) позволило добиться памяти на две геометрические формы: низкотемпературную форму сплав принимал при охлаждении, высокотемпературную - при нагреве.

Оказывается, можно «обучить» сплав запоминать две формы и без всякого постоянно действующего источника внешней силы. Идея такого способа предложена советскими учеными и признана изобретением (авторское свидетельство № 501113). Сущность его состоит в специальной термомеханической обработке сплава, создающей внутри материала микронапряжения, действие которых на атомы при мартенситных переходах аналогично действию внешней нагрузки. В результате сплав при охлаждении самопроизвольно принимает одну форму, при нагреве возвращается к исходной и т. д. Например, можно «обучить» пластину сворачиваться в кольцо при охлаждении, а при нагреве разворачиваться, или наоборот.

Часто у материалов с памятью формы наблюдается другое необычное свойство - сверхэластичность (резиноподобное поведение). Этот эффект проявляется в том случае, если мартенситное превращение вызывается не охлаждением, а приложением внешней нагрузки. Тогда превращение и «наведение порядка» в расположении кристаллов происходят одновременно. В результате наблюдается значительная деформация сплава, которая исчезает при разгрузке. При этом величина обратимой деформации раз в десять выше, чем у лучших пружинных материалов. Использование таких сплавов открывает новые возможности создания высокоэффективных пружинных амортизаторов, аккумуляторов механической энергии и т. д.

Еще одна особенность сплавов с памятью: высокая циклическая прочность, то есть способность выдерживать большие знакопеременные нагрузки без разрушения. Особенно эффективно использование таких материалов при значительных деформациях. В этом случае «долговечность» изделий из сплавов с памятью может быть в тысячи раз больше, чем изделий из традиционных материалов. Вспомним, например, как быстро разрушается любая проволока, когда подвергается гибу-перегибу в одном месте. Сплавы с памятью в принципе могут выдержать любое число таких циклов.

Циклическая стойкость обеспечивается все тем же особым механизмом мартенситного превращения, которое не сопровождается нарушением соседства атомов и разрушением межатомных связей, а следовательно, не происходит и накопления дефектов структуры, которые в конечном счете приводят к образованию трещин и разрушению обычных сплавов.

Наконец, еще об одном свойстве сплавов с памятью. Оказалось, что им присуща высокая способность рассеивать механическую энергию. Это связано с тем, что при мартенситных превращениях перестройка кристаллической решетки сопровождается выделением или поглощением тепла. Поэтому если внешняя нагрузка вызывает мартенситное превращение, то происходит интенсивный переход механической энергии в тепло. Кстати, при эффектах памяти наблюдается обратный процесс: превращение тепла в работу.

Профессии сплавов с памятью

Среди всех известных материалов с памятью формы наиболее перспективен для техники нитинол. Именно его чаще всего используют в приборах и устройствах разного назначения. Этому способствует не только отличная его память, но и целый комплекс других полезных свойств: высокая коррозионная стойкость, значительная прочность, технологичность.

Сегодня уже четко обозначились области, где применение сплавов с памятью наиболее перспективно. Прежде всего это энергетика. С их помощью пытаются создать тепловые двигатели, использующие низкотемпературные источники тепла. В 1977 году в Киеве на международной конференции по мартенситным превращениям демонстрировался фильм о таких устройствах. Схема теплового двигателя предельно проста (напомним, что прототипом его было устройство, описанное в событии № 2). Рабочие элементы, выполненные из нитинола и насаженные по окружности колеса, попадая в холодную воду, принудительно деформируются,- например, плоские пластины изгибаются в полуокружности. Затем в горячей воде пластины выпрямляются и при этом совершают работу. Часть ее идет на деформацию рабочих элементов, находящихся в это время в холодной воде, а другая часть на привод колеса, которое, в свою очередь, вращает электрогенератор.

Пока существуют лишь модели таких двигателей. Но даже они показывают высокую эффективность превращения тепла в работу с помощью сплавов с памятью. При этом надо еще раз подчеркнуть, что для работы тепловых двигателей используется тепло, которое пока другими способами превратить в работу сложно и дорого, а часто и вообще невозможно. Такое тепло, как правило, сегодня «пропадает» (солнечная энергия, геотермальные источники и тепловые отходы электростанций и др.).

Естественно, что материалы с памятью формы эффективны и для обратного процесса: «перекачки» тепла, то есть в качестве рабочего тела для холодильников или тепловых насосов.

Другое применение сплавов с памятью - герметизация и соединение различных деталей. В частности, применяют втулки из нитинола для соединения трубопроводов. Из сплава делают втулку, внутренний диаметр которой чуть меньше наружного диаметра трубопровода, охлаждают ее и раздают по диаметру так, чтобы свободно надеть на концы трубопровода. Затем втулку нагревают, и она восстанавливает (вспоминает) свой первоначальный размер, плотно обжимает трубопровод и тем самым осуществляет герметичное соединение. О высокой надежности такого соединения свидетельствует, например, следующий факт. Более 100 тысяч втулок из нитинола было установлено на истребителях F-14 (США) - и ни единого случая разрушения соединений или поломки при эксплуатации.

С помощью нитинола герметизируют также корпуса радиотехнических приборов без применения сварки или пайки. Здесь плоскую крышку предварительно деформируют в полусферу и свободно устанавливают в корпусе прибора. При нагреве крышка возвращается к исходной плоской форме, при этом врезается в пазы корпуса, надежно изолируя прибор от внешней среды.

Сплавы с памятью находят применение и в качестве рабочих элементов различных термочувствительных, сигнальных и исполнительных устройств и механизмов.

Большой интерес для космической техники представляют саморазвертывающиеся устройства, например, антенны, сделанные из нитинола. Изделие, имеющее большие размеры, свертывают (деформируют) и в таком компактном виде транспортируют к месту назначения, где после нагрева оно восстанавливает свою форму.

Нитинол находит применение и в медицине. За рубежом, например, разрабатываются методы лечения сколиоза (деформации позвоночника) с помощью стержня из нитинола.

Оригинальные работы ведутся Сибирским физико-техническим институтом совместно с Читинским и Томским медицинскими институтами, Курганским научно-исследовательским институтом экспериментальной и клинической ортопедии и травматологии. Разработан ряд новых хирургических приспособлений для соединения и сращивания отломков костей, протезирования и пломбирования зубов. Исследуются также возможности применения нитинола для создания новых медицинских инструментов.

Этими примерами, конечно, не исчерпываются все области использования сплавов с памятью. Послужной список их профессий, несомненно, шире, - и он непрерывно растет.

Вызывать у сплава мартенситный переход и соответственно управлять обратимым изменением формы можно не только с помощью нагрева и охлаждения или нагрузки. Такую роль может играть электрическое или магнитное поле. Следовательно, в принципе возможно создание, например, сплавов с магнитоупругим мартенситным превращением. В таких материалах магнитное поле либо самостоятельно, либо в совокупности с температурой (или нагрузкой) должно стимулировать мартенситный переход и тем самым приводить к обратимому изменению формы, то есть к памяти формы.

Вообще-то сплавы, где магнитным полем можно вызвать мартенситный переход, известны. Однако мартенсит в них, как правило, не упругий, а следовательно, и без памяти. А в сплавах, где наблюдаются термоупругие переходы, они практически не чувствительны к изменению напряженности магнитного поля. Но несомненно, что материалы с магнитомеханической памятью должны существовать.

Остановимся еще на одном интересном направлении, которое связано с изучением сплавов с памятью.

Смена типа кристаллической решетки при мартенситном превращении, кроме обратимого изменения формы, должна, конечно, вызывать и изменения всех других свойств, которые определяются строением решетки. Очевидно, что наряду с необычным механическим поведением сплавы с памятью» должны отличаться и особым комплексом обратимо меняющихся физических свойств. Для управления ими достаточно незначительно изменить температуру или приложить небольшую внешнюю нагрузку. Ситуация уникальная. Теоретически все именно так. А практическая задача состоит в том, чтобы найти сплавы, где нужные свойства будут существенно меняться. Первые успехи в этом направлении уже есть. Так, экспериментально наблюдали, что при нагружении нитинола выше некоторой величины электрическое сопротивление его скачком увеличивается на десятки процентов.

Кандидат физико-математических наук В. Хачин.

 

Возможно, будет полезно почитать: