Из условий прочности определить диаметр вала. Определить из условий прочности необходимые размеры диаметров редукторного ступенчатого вала. Построим эпюры изгибающих моментов

Задание 4

Для стального вала постоянного поперечного сечения

1. Определить значение моментов М 1 , М 2, М 3 , М 4 ;

2. Построить эпюру крутящих моментов;

3. Определить диаметр вала из расчетов на прочность и жесткость, приняв поперечное сечение вала - круг

Р 1 = 50 кВт

Р 3 = 15 кВт

Р 4 = 25 кВт

w = 18 рад/сек

w = n = = 30*18/3.14 = 172 об/мин

[ц 0 ] =0,02 рад/м - угол закручивания

G = 8*10 4 Мпа


Определяем внешние моменты:

М 1 = 9550 = 9550 = 2776 Hм = 2,8 кНм;

М 3 = 9550 = 9550 = 832,8 Hм = 0,83 кНм;

М 4 = 9550 = 9550 = 1388 Hм = 1,4 кНм;

Запишем уравнение статики:

УМ = М 1 + М 3 - М 2 + М 4 = 0

И из него найдем величину момента М 2:

М 2 = М 3 + М 1 + М 4 = 832,8 +2776 +1388 = 4996,8 Hм = 5 кНм;

Прежде всего строим эпюру крутящих моментов. Значения крутящих моментов по участкам следующие:

Т 1 = -М 1 = -2,8кНм;

Т 2 = -М 1 - М 3 = -2,8 - 0,83 = - 3,63 кНм;

Т 3 = -М 1 - М 3 + М 2 = -3,63 + 5 = 1,37 кНм.

Строим эпюры:

Вал разбивается на три участка I, II, III.


Находим полярный момент сопротивления вала, требуемый по условию прочности:

W p = = = 121 10 -6 м 3 = 121 см 3

Диаметр сплошного вала определяем с помощью формулы:

W p 0.2d c 3 = 121 cм 3 ,

d c 3 = = 8.46 см 9 см = 90 мм.

Затем рассчитываются диаметры по участкам вала из условия жесткости, т.е. с использованием формулы

d жест1 = = 0,1 м = 100 мм

d жест2 = = 0,1068 м = 107 мм

d жест1 = = 0,0837 м = 84 мм

В качестве окончательных следует выбрать наибольшие значения диаметров, рассчитанные из условия жесткости. Таким образом, окончательный размер диаметра вала таков: d 1 = 107 мм.

Из стандартного ряда: d 1 = 120 мм

Задание 5

На вал жестко насажены шкив и колесо,

Определить силы F 2 .F 2r = 0.4 F 1 если значение силы F 1 задано

Представим физическую систему:


Задачу решаем в следующей последовательности:

1. изображаем на рисунке тело, равновесие которого рассматривается, с действующими на него активными и реактивными силами и выбираем систему осей координат;

2. из условия равновесия тела, имеющего неподвижную ось, определяем значения сил F 2 , F r2 ;

3. составляем шесть уравнений равновесия;

4. решаем уравнения и определяем реакции опор;

5. проверяем правильность решения задачи.

1. Изображаем вал со всеми действующими на него силами, а также оси координат


Рассмотрим систему сил, действующую в системе

Определяем составляющие нагрузки со стороны шкива

Р 1 = (2F 1 + F 1) = 3 F 1 = 3*280 = 840 Н = 0.84 кН


2. Определяем F2 и Fr2. Из условия равновесия тела, имеющего неподвижную ось:

F 2 = = = 507.5 H

F r2 = 0.4F 2 = 0.4*507.5 = 203 H

3. Составляем шесть уравнений равновесия:

УY = -Р 1 - F 2 + A y + B y = 0 (1)

УX = -F 2r + A х + B х = 0 (2)

УМ yС = -Р 1 * 32 + А у * 20 - В у * 10 = 0 (3)

УМ yВ = - Р 1 * 42 + А у * 30 - F 2 * 10 = 0 (4)

УМ xC = А x * 20 - В x * 10 = 0 (5)

УМ хВ = А x * 30 + F 2r * 10 = 0 (6)

Рассмотрим уравнения (3) и (4)

840 * 32 + А у * 20 - В у * 10 = 0

840 * 42 + А у * 30 - 507,5 *10 = 0

Из последнего уравнения:

А у = 40355/30 = 1345 Н

Из первого уравнения:

26880 + 26900 = 10*В у? В у = 20/10 = 2 Н

Рассмотрим уравнения (5) и(6)

А x * 20 - В x * 10 = 0

А x * 30 + 203* 10 = 0

Из последнего уравнения А х = 2030/30 = 67,7 Н

Из первого уравнения: 1353,3 = 10*В у? В у = 1353/10 = 135,3 Н

Проверку произведем по уравнениям (1) и (2):

УY = -840 - 507,5 + 1345 + 2 = 0

УX = -203 + 67,7 + 135,3 = 0

Расчеты произведены верно. Окончательно реакции опор А и В:

А = = = 1346,7 Н

В = = = 135,3 Н

Пример 1. Из расчетов на прочность и жесткость определить потребный диаметр вала для передачи мощности 63 кВт при скорости 30 рад/с. Материал вала - сталь, допускаемое напряжение при кручении 30 МПа; допускаемый относительный угол закручивания [φ о ] = 0,02рад/м; модуль упругости при сдвиге G = 0,8 * 10 5 МПа.

Решение

1. Определение размеров поперечного сечения из расчета на прочность.

Условие прочности при кручении:

Определяем вращающий момент из формулы мощности при вращении:

Из условия прочности определяем момент сопротивления вала при кручении

Значения подставляем в ньютонах и мм.

Определяем диаметр вала:

2. Определение размеров поперечного сечения из расчета на жесткость.

Условие жесткости при кручении:

Из условия жесткости определяем момент инерции сечения при кручении:

Определяем диаметр вала:

3. Выбор потребного диаметра вала из расчетов на прочность и жесткость.

Для обеспечения прочности и жесткости одновременно из двух найденных значений выбираем большее.

Полученное значение следует округлить, используя ряд пред­почтительных чисел. Практически округляем полученное значение так, чтобы число заканчивалось на 5 или 0. Принимаем значение d вала = 75 мм.

Для определения диаметра вала желательно пользоваться стан­дартным рядом диаметров, приведенном в Приложении 2.

Пример 2. В поперечном сечении бруса d = 80 мм наибольшее касательное напряжение τ тах = 40 Н/мм 2 . Определить касательное напряжение в точке, удаленной от центра сечения на 20 мм.

Решение

б . Очевидно,


Пример 3. В точках внутреннего контура поперечного сечения трубы (d 0 = 60 мм; d = 80 мм) возникают касательные напряжения, равные 40 Н/мм 2 . Определить максимальные касательные напряжения, возникающие в трубе.

Решение

Эпюра касательных напряжений в поперечном сечении представлена на рис. 2.37, в . Очевидно,

Пример 4. В кольцевом поперечном сечении бруса (d 0 = 30 мм; d = 70 мм) возникает крутящий момент М z = 3 кН-м. Вычислить касательное напряжение в точке, удаленной от центра сечения на 27 мм.

Решение

Касательное напряжение в произвольной точке поперечного сечения вычисляется по формуле

В рассматриваемом примере М z = 3 кН-м = 3-10 6 Н мм,

Пример 5. Стальная труба (d 0 = l00 мм; d = 120 мм) длиной l = 1,8 м закручивается моментами т , приложенными в ее торцевых сечениях. Определить ве­личину т , при которой угол закручивания φ = 0,25°. При найденном значении т вычислить максимальные касательные напряжения.

Решение

Угол закручивания (в град/м) для одного участка вычисляется по формуле

В данном случае

Подставляя числовые значения, получаем

Вычисляем максимальные касательные напряжения:

Пример 6. Для заданного бруса (рис. 2.38, а ) построить эпюры крутящих моментов, максимальных каса­тельных напряжений, углов поворота поперечных сечений.

Решение

Заданный брус имеет участки I, II, III, IV, V (рис. 2. 38, а). Напомним, что границами участков являются сечения, в которых приложены внешние (скру­чивающие) моменты и места изменения размеров попереч­ного сечения.

Пользуясь соотношением

строим эпюру крутящих моментов.

Построение эпюры М z начинаем со свободного конца бруса:

для участков III и IV

для участка V

Эпюра крутящих моментов представлена на рис, 2.38, б . Строим эпюру максимальных касательных напряжений по длине бруса. Условно приписываем τ шах те же знаки, что и соответствующим крутящим моментам. На участке I

на участке II

на участке III

на участке IV

на участке V

Эпюра максимальных касательных напряжений пока­зана на рис. 2.38, в .

Угол поворота поперечного сечения бруса при посто­янных (в пределах каждого участка) диаметре сечения и крутящем моменте определяется по формуле

Строим эпюру углов поворота поперечных сечений. Угол поворота сечения А φ л = 0, так как в этом сечении брус закреплен.

Эпюра углов поворота поперечных сечений изображе­на на рис. 2.38, г .

Пример 7. На шкив В ступенчатого вала (рис. 2.39, а) передается от двигателя мощность N B = 36 кВт, шкивы А и С соответственно передают на станки мощности N A = 15 кВт и N C = 21 кВт. Час­тота вращения вала п = 300 об/мин. Про­верить прочность и жесткость вала, если [τ K J = 30 Н/мм 2 , [Θ] = 0,3 град/м, G = 8,0-10 4 Н/мм 2 , d 1 = 45 мм, d 2 = 50 мм.

Решение

Вычислим внешние (скручивающие) моменты, приложенные к валу:

Строим эпюру крутящих моментов. При этом, двигаясь от левого конца вала, условно считаем момент, соответ­ствующий N А, положительным, N c - отрицательным. Эпюра M z показана на рис. 2.39, б . Максимальные напряжения в поперечных сечениях участка АВ

что меньше [т к ] на

Относительный угол закручивания участка АВ

что значительно больше [Θ] ==0,3 град/м.

Максимальные напряжения в поперечных сечениях участка ВС

что меньше [т к ] на

Относительный угол закручивания участка ВС

что значительно больше [Θ] = 0,3 град/м.

Следовательно, прочность вала обеспечена, а жест­кость - нет.

Пример 8. От электродвигателя с помощью ремня на вал 1 передается мощность N = 20 кВт, С вала 1 по­ступает на вал 2 мощность N 1 = 15 кВт и к рабочим ма­шинам - мощности N 2 = 2 кВт и N 3 = 3 кВт. С вала 2 к рабочим машинам поступают мощности N 4 = 7 кВт, N 5 = 4 кВт, N 6 = 4 кВт (рис. 2.40, а). Определить диаметры валов d 1 и d 2 из условия прочности и жесткости, если [τ K J = 25 Н/мм 2 , [Θ] = 0,25 град/м, G = 8,0-10 4 Н/мм 2 . Се­чения валов 1 и 2 считать по всей длине постоянными. Частота вращения вала электродвигателя п = 970 об/мин, диаметры шкивов D 1 = 200 мм, D 2 = 400 мм, D 3 = 200 мм, D 4 = 600 мм. Сколь­жением в ременной передаче пренебречь.

Решение

Нарис. 2.40, б изобра­жен вал I . На него поступает мощность N и с него снимаются мощности N l , N 2 , N 3 .

Определим угло­вую скорость враще­ния вала 1 и внешние скручивающие момен­ты

Кручение стержня круглого сечения – условие задачи

К стальному валу постоянного поперечного сечения (рис. 3.8) приложены четыре внешних скручивающих момента: кН·м; кН·м; кН·м; кН·м. Длины участков стержня: м; м, м, м. Требуется: построить эпюру крутящих моментов, определить диаметр вала при кН/см2 и построить эпюру углов закручивания поперечных сечений стержня.

Кручение стержня круглого сечения – расчетная схема

Рис. 3.8

Решение задачи кручение стержня круглого сечения

Определяем реактивный момент, возникающий в жесткой заделке

Обозначим момент в заделке и направим его, например, против хода часовой стрелки (при взгляде навстречу оси z).

Запишем уравнение равновесия вала. При этом будем пользоваться следующим правилом знаков: внешние скручивающие моменты (активные моменты, а также реактивный момент в заделке), вращающие вал против хода часовой стрелки (при взгляде на него навстречу оси z), считаем положительными.

Знак «плюс» в полученном нами выражении говорит о том, что мы угадали направление реактивного момента , возникающего в заделке.

Строим эпюру крутящих моментов

Напомним, что внутренний крутящий момент , возникающий в некотором поперечном сечении стержня, равен алгебраической сумме внешних скручивающих моментов, приложенных к любой из рассматриваемых частей стержня (то есть действующих левее или правее сделанного сечения). При этом внешний скручивающий момент, вращающий рассматриваемую часть стержня против хода часовой стрелки (при взгляде на поперечное сечение), входит в эту алгебраическую сумму со знаком «плюс», а по ходу – со знаком «минус».

Соответственно, положительный внутренний крутящий момент, противодействующий внешним скручивающим моментам, направлен по ходу часовой стрелки (при взгляде на поперечное сечение), а отрицательный – против ее хода.

Разбиваем длину стержня на четыре участка (рис. 3.8, а). Границами участков являются те сечения, в которых приложены внешние моменты.

Делаем по одному сечению в произвольном месте каждого из четырех участков стержня.

Cечение 1 – 1. Мысленно отбросим (или закроем листком бумаги) левую часть стержня. Чтобы уравновесить скручивающий момент кН·м, в поперечном сечении стержня должен возникнуть равный ему и противоположно направленный крутящий момент . С учетом упомянутого выше правила знаков

кН·м.

Сечения 2 – 2 и 3 – 3:

Сечение 4 – 4. Чтобы определить крутящий момент, в сечении 4 – 4 отбросим правую часть стержня. Тогда

кН·м.

Легко убедиться в том, что полученный результат не изменится, если мы отбросим теперь не правую, а левую часть стержня. Получим

Для построения эпюры крутящих моментов проводим тонкой линией ось, параллельную оси стержня z (рис. 3.8, б). Вычисленные значения крутящих моментов в выбранном масштабе и с учетом их знака откладываем от этой оси. В пределах каждого из участков стержня крутящий момент постоянен, поэтому мы как бы «заштриховываем» вертикальными линиями соответствующий участок. Напомним, что каждый отрезок «штриховки» (ордината эпюры) дает в принятом масштабе значение крутящего момента в соответствующем поперечном сечении стержня. Полученную эпюру обводим жирной линией.

Отметим, что в местах приложения внешних скручивающих моментов на эпюре мы получили скачкообразное изменение внутреннего крутящего момента на величину соответствующего внешнего момента.

Определяем диаметр вала из условия прочности

Условие прочности при кручении имеет вид

,

где – полярный момент сопротивления (момент сопротивления при кручении).

Наибольший по абсолютному значению крутящий момент возникает на втором участке вала: кН·см.

Тогда требуемый диаметр вала определяется по формуле

см.

Округляя полученное значение до стандартного, принимаем диаметр вала равным мм.

Определяем углы закручивания поперечных сечений A, B, C, D и E и строим эпюру углов закручивания

Сначала вычисляем крутильную жесткость стержня , где G – модуль сдвига, а – полярный момент инерции. Получим

Углы закручивания на отдельных участках стержня равны:

рад;

рад;

рад;

рад.

Угол закручивания в заделки равен нулю, то есть . Тогда

Эпюра углов закручивания показана на рис. 3.8, в. Отметим, что в пределах длины каждого из участков вала угол закручивания изменяется по линейному закону.

Пример задачи на кручение "круглого" стержня для самостоятельного решения

Условие задачи на кручение "круглого" стержня

Жестко защемленный одним концом стальной стержень (модуль сдвига кН/см2) круглого поперечного сечения скручивается четырьмя моментами (рис. 3.7).

Требуется:

· построить эпюру крутящих моментов;

· при заданном допускаемом касательном напряжении кН/см2 из условия прочности определить диаметр вала, округлив его до ближайшего из следующих значений 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 200 мм;

· построить эпюру углов закручивания поперечных сечений стержня.

Варианты расчетных схем к задаче на кручение стержня круглого сечения для самостоятельного решения

Пример задачи на кручение круглого стержня – исходные условия для самостоятельного решения

Номер схемы

  1. Перед решением задачи по сопромату необходимо переписать полностью ее условие с числовыми данными, составить эскиз в масштабе и указать на нем в числах все величины, необходимые для дальнейшего расчета,
  2. Решение задач по сопромату дополняйте краткими пояснениями и чертежами, на которых визуализированы входящие в расчет величины,
  3. Перед использованием формулы для определения напряженно-деформированного состояния необходимо изучить соответствующую тему лекций по сопромату, чтобы понять физический смысл всех величин, входящих в нее,
  4. При подстановке в используемую формулу величин силы, момента или длины необходимо перевести их в одну систему единиц,
  5. При решении задач по сопромату точность расчетов не должна превышать трех значащих цифр (результат решения задачи не может быть точнее заложенных в расчетные формулы предпосылок),
  6. Заканчивать расчеты нужно анализом результатов - преподавали по сопромату таким образом проверяют ваши работы. Анализ результатов решения поможет избежать нелепых ошибок и оперативно их устранить.

Задание

Для стального вала круглого поперечного сечения определить значения внешних моментов, соответствующих передаваемым мощ­ностям, и уравновешенный момент (табл.7.1 и табл.7.2).

Построить эпюру крутящих моментов по длине вала.

Определить диаметры вала по сечениям из расчетов на проч­ность и жесткость. Полученный больший результат округлить до ближайшего четного или оканчивающегося на 5 числа.

При расчете использовать следующие данные: вал вращается с угловой скоростью 25 рад/с; материал вала - сталь, допуска­емое напряжение кручения 30 МПа, модуль упругости при сдвиге 8 10 4 МПа; допускаемый угол закручивания = 0,02 рад/м.

Провести расчет для вала кольцевого сечения, приняв с = 0,9. Сделать выводы о целесообразности выполнения вала круглого или кольцевого сечения, сравнив площади поперечных сечений.

Цель работы - научиться выполнять проектировочные и проверочные расчеты круглого бруса для статически определимых систем, проводить проверку на жесткость.

Теоретическое обоснование

Кручением называется нагружение, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор – крутящий момент. Внешними нагрузками также являются две противоположно направленные пары сил.

Распределение касательных напряжений по сечению при кручении(рис. 7.1)

Касательное напряжение в точке А:

Рис.7.1

(7.1)

где - расстояние от точки А до

центра сечения.

Условие прочности при кручении

; (круг), (7.2)

(кольцо), (7.3)

где М к - крутящий момент в сечении, Н-м, Н-мм;

W p - момент сопротивления при кручении, м 3 , мм 3 ;

[т к ] - допускаемое напряжение при кручении, Н/м 2 , Н/мм 2 .

Проектировочный расчет, определение размеров по­перечного сечения

(7.4)

где d - наружный диаметр круглого сечения;

d B n - внутренний диаметр кольцевого сечения; с = d BK /d.

Определение рационального расположения колесна валу

Рациональное расположение колес - расположение, при кото­ром максимальное значение крутящего момента на валу - наи­меньшее из возможных.

Условие жесткости при кручении

; G ≈ 0,4E (7.5)

где G - модуль упругости при сдвиге, Н/м 2 , Н/мм 2 ;

Е - модуль упругости при растяжении, Н/м 2 , Н/мм 2 .

[φо ] - допускаемый угол закручивания, [φо] = 0, 54-1 град/м;

J p - полярный момент инерции в сечении, м 4 , мм 4 .

(7.6)

Проектировочный расчет, определение наружное диаметра сечения

Порядок выполнения работы

1. Построить эпюру крутящих моментов по длине вала для пред­ложенной в задании схемы.

2. Выбрать рациональное расположение колес на валу и даль­нейшие расчеты проводить для вала с рационально расположенными шкивами.

3. Определить потребные диаметры вала круглого сечения из расчета на прочность и жесткость и выбрать наибольшее из полу­ченных значений, округлив величину диаметра.

4. Сравнить затраты металла для случая круглого и кольцево­го сечений. Сравнение провести по площадям поперечных сечений валов.

Контрольные вопросы

1. Какие деформации возникают при кручении?

2. Какие гипотезы выполняются при деформации кручения?

3. Изменяются ли длина и диаметр вала после скручивания?

4. Какие внутренние силовые факторы возникают при кручении?

5. Что такое рациональное расположение колос на валу?

6. Что такое полярный момент инерции? Какой физический смысл имеет эта величина?

7. В каких единицах измеряется?

Пример выполнения

Для заданного бруса (рис.7.1) построить эпюры крутящих моментов, рациональным расположением шкивов на валу добиться уменьшения значения максимального крутящего момента. Построить эпюру крутящих моментов при рациональном расположении шкивов. Из условия прочности определить диаметры валов для сплошного и кольцевого сечений, приняв с = . Сравнить полученные результаты по полученным площадям поперечных сечений. [τ] = 35 МПа.

Решение

Сечение 2 (рис.7.2б):

Сечение 3 (рис.7.3в):

Рис.7.2

А б в

Рис.7.3

  1. Строим эпюру крутящих моментов. Значения крутящих моментов откладываем вниз от оси, т.к. моменты отрицательные. Максимальное значение крутящего момента на валу в этом случае 1000 Н·м (рис.7.1).
  2. Выберем рациональное расположение шкивов на валу. Наиболее целесообразно такое размещение шкивов, при котором наибольшие положительные и отрицательные значения крутящих моментов на участках будут по возможности одинаковыми. Из этих соображений ведущий шкив, передающий момент 1000 Н·м, помещают ближе к центру вала, ведомые шкивы 1 и 2 размещают слева от ведущего с моментом 1000 Н·м, шкив 3 остается на том же месте. Строим эпюру крутящих моментов при выбранном расположении шкивов (рис.7.3).

Максимальное значение крутящего момента на валу при выбранном расположении шкивов – 600 Н*м.

Рис.7.4

Момент сопротивления кручению:

Определяем диаметры вала по сечениям:

Округляем полученные значения: , ,

  1. Определяем диаметры вала по сечениям при условии, что сечение - кольцо

Моменты сопротивления остаются теми же. По условию

Полярный момент сопротивления кольца:

Формула для определения наружного диаметра вала кольцевого сечения:

Расчет можно провести по формуле:

Диаметры вала по сечениям:

Наружные диаметры вала кольцевого сечения практически не изменились.

Для кольцевого сечения: , ,

  1. Для выводе об экономии металла, при переходе на кольцевое сечение, сравним площади сечений (рис.7.4)

При условии что сечение – круг (рис.7.4а)

Сплошное круглое сечение:

При условии, что сечение – кольцо, (рис.7.4б)

Кольцевое сечение:

Сравнительная оценка результатов:

Следовательно, при переходе с кругового на кольцевое сечение экономия металла по весу составит 1,3 раза.

рис.7.4

Таблица 7.1

Таблица 7.2

Вариант Параметры
a = b = с, м Р1,кВт Р2,кВт Р3,кВт
1,1 2,1 2,6 3,1
1,2 2,2 2,7 3,2
1,3 2,3 2,8 3,3
1,4 2,4 2,9 3,4
1,5 2,5 3,0 3,5
1,6 2,6 3,1 3,6
1,7 2,7 3,2 3,7
1,8 2,8 3,3 3,8
1,9 2,9 3,4 3,9
2,0 3,0 3,5 4,0
1,1 3,1 3,4 4,1
1,2 3,2 3,3 4,2
1,3 3,3 3,2 4,3
1,4 3,4 3,1 4,5
1,5 3,5 2,8 2,9
1,3 2,1 2,6 3,1
1,4 2,2 2,7 3,2
1,5 2,3 2,8 3,3
1,6 2,4 2,9 3,4
1,7 2,5 3,0 3,5
1,8 2,6 3,1 3,6
1,9 2,7 3,2 3,7
2,0 2,8 3,3 3,8
1,1 2,9 3,4 3,9
1,2 3,0 3,5 4,0
1,3 3,1 3,4 4,1
1,4 3,2 3,3 4,2
1,5 3,3 3,2 4,3
1,4 3,4 3,1 4,5
1,9 3,5 2,8 2,9

ПРИЛОЖЕНИЕ А

5.1 (Вариант 08)

Указания: мощность на зубчатых колесах принять Р 2 =0,5Р 1 , Р 3 =0,3Р 1 и Р 4 =0,2Р1. Полученное расчетное значение диаметра (в мм) округлить до ближайшего большего числа, оканчивающегося на 0, 2, 5, 8 или СТ СЭВ 208-75 [τ]=30 МПа.

Таблица 20 — Исходные данные

№ задачи и
схемы на рис.35
Р, кВт ω, рад/c Расстояние между шкивами, м
l 1 l 2 l 3
100,Х 28 26 0,2 0,1 0,3

Ответ: d 1 =45,2 мм, d 2 =53,0 мм, d 3 =57,0 мм, φ I =0,283º, φ II =0,080º, φ III =0,149º.

5.2

г) определить диаметр вала, приняв [σ]=60 Н/мм² (в задаче 117) и полагая F r =0,4F t . В задаче 117 расчет производить по гипотезе наибольших касательных напряжений.

Таблица 22 — Исходные данные

№ задачи и
схемы на рис.37
Вариант Р, кВт ω 1 , рад/c
117,VII 08 8 35

Ответ: R By =7145 H, R Ay =3481 H, d=51 мм.

5.3 Для стального вала постоянного поперечного сечения (рис.7.17), передающего мощность Р (кВт) при угловой скорости ω (рад/c) (числовые значения этих величин для своего варианта взять из табл.7.4):

а) определить вертикальные и горизонтальные составляющие реакции подшипников;

б) построить эпюру крутящих моментов;

в) построить эпюры изгибающих моментов в вертикальной и горизонтальной плоскостях;

г) определить диаметр вала, приняв [σ]=70 МПа (в задачах 41, 43, 45, 47, 49) или [σ]=60 МПа (в задачах 42, 44, 46, 48, 50). Для усилий, действующих на зубчатое колесо, принять F r =0,36F t , для натяжения ремней S 1 =2S 2 . В задачах 42, 44, 46, 48, 50 расчет производить по гипотезе потенциальной энергии формоизменения, а в задачах 41, 43, 45, 47, 49 по гипотезе наибольших касательных напряжений.

Таблица 22 — Исходные данные

Номер задачи
и схемы на рис.7.17
Вариант Р, кВт ω, рад/c
Задача 45, схема V 47 30 24

Ответ: R By =4000 H, R Ay =14000 H, d=64 мм.

5.4 Для одной из схем (рис.35, табл.20) построить эпюру крутящих моментов; определить диаметр вала на каждом участке и полный угол закручивания.

Указания: мощность на зубчатых колесах принять Р 2 =0,5Р 1 , Р 3 =0,3Р 1 и Р 4 =0,2Р 1 . Полученное расчетное значение диаметра (в мм) округлить до ближайшего большего числа, оканчивающегося на 0, 2, 5, 8 или СТ СЭВ 208-75 [τ]=30 МПа.

Таблица 20

№ задачи и схемы на рис.35 Вариант Р, кВт ω, рад/c Расстояние между шкивами, м
l 1 l 2 l 3
91,I 29 20 30 0,2 0,9 0,4

Ответ: d 1 =28,5 мм, d 2 =43,2 мм, d 3 =48,5 мм, φ I =0,894º, φ II =0,783º, φ III =0,176º.

5.5 Для стального вала постоянного поперечного сечения с одним зубчатым колесом (рис.37), передающего мощность Р (кВт) при угловой скорости ω 1 (рад/c) (числовые значения этих величин для своего варианта взять из табл.22):

а) определить вертикальные и горизонтальные составляющие реакции подшипников;

б) построить эпюру крутящих моментов;

в) построить эпюры изгибающих моментов в вертикальной и горизонтальной плоскостях;

г) определить диаметр вала, приняв [σ]=70 Н/мм² (в задаче 112) и полагая F r =0,4F t . В задаче 112 расчет производить по гипотезе потенциальной энергии формоизменения.

Таблица 22

№ задачи и схемы на рис.37 Вариант Р, кВт ω 1 , рад/c
112,II 29 20 50

Ответ: R By =1143 H, R Ay =457 H, d=40,5 мм.

 

Возможно, будет полезно почитать: