Особенности полета птиц разных видов. Полёт птицы. Внутреннее строение птиц

Очень любопытно наблюдать за полетом птицы. Особенно интересно, когда вы стоите на корме движущегося судна, а в это время за ним вслед летят чайки. Некоторые из них быстро машут крыльями, а некоторые спокойно и грациозно маневрируют в воздушных потоках. Что позволяет им проделывать такие невероятные для человека трюки? Давайте попробуем разобраться.

Принцип полета птицы

Как летает птица? Прежде всего, необходимо понимать, что существует два способа птичьего полета - машущий и планирующий. О каждом по порядку:

Планирующий способ полета

Для осознания принципов работы крыла птицы придется вспомнить школьный курс аэродинамики. Основные постулаты этой науки гласят: для образования подъемной силы под крылом летательного средства необходима существенная разница между давлением воздуха над крылом и под крылом. Чем плотнее воздух под крылом, тем быстрее и выше самолет поднимается в небо.

Почему мы ведем речь о самолете? Дело в том, что человек часто конструирует свои изобретения, отталкиваясь от окружающего мира. Пример с самолетом прекрасно отражает принцип работы крыльев птицы. Такой полет называют планирующим: птица просто зависает в воздухе, используя силу ветра для движения в нужном направлении. Для подъема вверх задняя поверхность крыла опускается к земле, а для снижения, напротив, приподнимается. Может быть, вы замечали, что чайки в момент скоростного падения складывают крылья.

Машущий способ полета

Этот способ птичьего полета наука пытается разгадать и по сей день. Известно, что энергетическая эффективность полета птицы в десять раз превышает эффективность любого самолета. Как такое возможно?

На первый взгляд, очевидно, - машущие движения крыльями при должном их положении должны двигать птицу вперед. Однако ученые заметили важную деталь. С точки зрения физики, угол поворота крыла птицы должен постоянно меняться для достижения прямолинейного полета по горизонтали - иными словами, только вперед. В противном случае мы будем наблюдать либо движение птицы к земле по дуге (параболической траектории), либо такое же движение наверх. Однако это никоим образом не описывает реальный полет обычной птицы! И угол поворота ее крыла не меняется.

Долгое время данная проблема не могла найти разрешения, пока не появилась одна любопытная теория.

Как утверждают создатели теории, которая, может стать разгадкой сбалансированного полета птицы, дело в физиологической особенности крыла. Крыло и перья птицы очень гибки на краях. При активном машущем движении окончания пера движутся в противоложную сторону от основного движения. Например, при движении крыла вниз окончания его перьев движутся наверх. Аэродинамические свойства крыла естественным образом меняются, что и приводит к равномерному движению вперед по горизонтали. Гибкое строение крыльев и перьев позволяет птахе беспрепятственно лететь вперед без падения вниз или подъема наверх.

Почему самолет не летает, как птица?

На сегодняшний день, наука, осознав особенности строения пернатых, пока не способна воспроизвести подобное. Еще не созданы такие двигатели и материалы, которые бы обеспечили равномерный полет машущим методом. Признаться, это и не нужно. Нынешние самолеты весьма успешно справляются с полетами на реактивной тяге.

Однако исследования ученых в этом направлении не прекращаются. Как мы уже отмечали выше, эффективность полета птицы превосходит тот же показатель технического средства во много раз. Значит, изучая принципы полета птицы, можно попробовать уменьшить затраты энергии самолета и увеличить его грузоподъемность, дальность перелета и другие показатели.

Тем, кому интересно узнать больше об особенностях птичьего полета, советуем ознакомиться .

Полет птиц можно разделить на две основные категории: это парящий, или пассивный, полет и машущий, или активный, полет. При парении птица движется в воздухе продолжительное время, не делая взмахов крыльями и пользуясь восходящими воздушными потоками, которые образуются вследствие неравномерного нагрева поверхности земли солнцем. Скорость движения этих воздушных потоков определяет высоту полета птицы.

Если двигающийся вверх воздушный поток поднимается со скоростью, равной скорости падения птицы, то птица может парить на одном уровне; если же воздух поднимается со скоростью, превосходящей скорость падения птицы, то последняя поднимается вверх. Используя различия в скорости двух потоков воздуха, неравномерное действие ветра - его усиление и ослабление, перемены направления ветра, пульсации воздуха, - парящая птица может не только часами держаться в воздухе, не тратя особых усилий, но и подниматься и опускаться. Сухопутные парящие виды, например питающиеся падалью грифы и др., пользуются обычно лишь восходящими потоками воздуха. Морские же парящие формы - альбатросы, буревестники, питающиеся мелкими беспозвоночными и вынужденные часто опускаться к воде и подниматься,- используют обычно эффект действия ветра, различия в скорости воздушных потоков, пульсации воздуха и завихрения.

Для парящих птиц характерны крупные размеры, длинные крылья, длинные плечо и предплечье (большое развитие несущей поверхности второстепенных маховых, число которых у грифов достигает 19-20, а у альбатросов даже 37), довольно короткая кисть, относительно малые размеры сердца (так как пассивный полет не требует усиленной работы мускулатуры). Крыло бывает то широким (наземные виды), то узким (морские виды). Машущий полет сложнее и разнообразнее парящего. Стоит сравнить полет стрижа, полет медленно двигающей крыльями вороны, трепещущую в воздухе пустельгу и стремительно бросающегося на добычу сапсана, быстро летящую утку и тяжело хлопающего крыльями фазана, чтобы убедиться в справедливости этого замечания. Существуют различные и довольно противоречивые попытки классификации различных типов машущего полета, останавливаться на которых мы здесь не будем.

Птица обычно пользуется не одним типом полета, а комбинирует их в зависимости от обстоятельств. При этом надо иметь в виду и то, что летательные движения состоят из последовательно сменяющих одна другую фаз. За взмахами крыльев следуют фазы, когда крыло не производит гребных движений: это скользящий полет, или парение. Таким полетом, пользуются преимущественно птицы средних и крупных размеров, с достаточным весом. Мелкие же птицы обычно все время энергично работают крыльями или временами могут складывать крылья, прижимая их к туловищу. Последнее особенно характерно для вьюрковых птиц. Ускорение в полете достигается птицей путем увеличения весовой нагрузки несущей поверхности, для чего необходимо несколько сложить крылья. Медленно летящая птица имеет полностью развернутый хвост и распростертые крылья. По мере ускорения движения она несколько складывает маховые перья, причем у всех хорошо летающих птиц они образуют сплошную поверхность (у сокола, чайки, стрижа, ласточки и т. д.).

Большое значение для скорости движения птиц имеет ветер . Вообще говоря, для полета благоприятен попутный или несколько боковой ветер, но для взлета и посадки благоприятен встречный ветер. Попутный ветер при полете способствует увеличению скорости полета птицы. Увеличение это довольно значительно: например, по наблюдениям над пеликанами в Калифорнии установлено, что увеличение скорости движения воздуха от фактического безветрия до 90 км/час способствовало изменению скорости полета пеликанов с 25 до 40 км/час. Однако сильный попутный ветер требует от птицы больших усилий для сохранения возможности активного управления полетом.

Продолжительность и быстрота полета птиц очень велики, хотя обычно в этом отношении распространены преувеличенные представления. Самое явление перелетов показывает, что птицы могут совершать длительные передвижения. Европейские ласточки, например, зимуют в тропической Африке, а некоторые кулики, гнездящиеся в Северо-Восточной Сибири, улетают на зиму в Новую Зеландию и в Австралию. Скорость и высота полета птиц значительны, хотя уже давно превзойдены современными летательными машинами. Однако машущее крыло птицы дает ей много преимуществ, в первую очередь в маневренности, по сравнению с современными самолетами.

Современные технические средства (наблюдения с самолетов, скоростная съемка, радары и т. д.) позволили точнее определить скорости полета птиц. Выяснилось, что при перелетах птицы в среднем используют большие скорости, чем при перемещениях вне сезона миграций. Грачи на перелетах перемещаются со скоростью 65 км/час. Средняя же скорость их полета вне времени миграций - в гнездовой период и на зимовке - составляет примерно 48 км/час. Скворцы на миграциях летят со скоростью 70-80 км/час, в другое время 45-48 км/час. По наблюдениям с самолетов установлено, что средняя скорость перемещения птиц при перелетах колеблется между 50 и 90 км/час. Так, серые журавли, серебристые чайки, большие морские чайки летят со скоростью 50 км/час, зяблики, чижи - 55 км/час, ласточки-касатки - 55-60 км/час, дикие гуси (разные виды) - 70-90 км/час, свиязи - 75-85 км/час, кулики (разные виды) - в среднем около 90 км/час. Наибольшая скорость отмечена у черного стрижа - 110-150 км/час. Эти цифры относятся к весенним перелетам, проходящим наиболее напряженно и, вероятно, отражающим наибольшие скорости полета птиц. Осенние миграции протекают значительно медленнее, например скорости полета аистов на осенних миграциях составляют едва ли половину скорости их весеннего движения.

Вопрос о высоте полета птиц долгое время оставался неясным. Старое представление о том, что передвижение птиц проходит, как правило, на больших высотах (500-1600 м над уровнем моря), вызывало сомнения. Однако астрономические наблюдения показали, что, по всей вероятности, максимальная высота полета птиц достигает 2000 и даже 3000 м. В какой-то степени это получило подтверждение при использовании радаров. Выяснилось, что перелеты весной протекают на больших высотах, чем осенью, что птицы ночью летят на больших высотах, чем днем. Воробьиные птицы, например зяблики, летят на высотах несколько меньших, чем 1500 м; более крупные воробьиные, например дрозды,- на высоте 2000-2500 м. Кулики летят на высоте около 1500 м. Хотя полет является основным и наиболее характерным способом передвижения птиц, им свойственны и другие весьма разнообразные способы движения.

Общеизвестные подразделения птиц на водных, наземных, древесных указывают на известные различия этих групп и в отношении движения.

Рассмотрим горизонтальный поток воздуха относительно наклонной поверхности крыла в том случае, когда его передняя кромка приподнята над задней. В этом смысле крыло действует как несущая плоскость. Поток воздуха над крылом встречает меньшее сопротивление и развивает большую скорость, чем под крылом (рис. 17.52). В результате давление воздуха над крылом уменьшается, а под крылом - увеличивается. Так возникает подъемная сила . Ее величина зависит от размеров и формы крыла, угла его наклона по отношению к длинной оси тела (угол атаки) и скорости полета. В воздухе на тело птицы действует еще одна сила, которая стремится отвести крыло назад в направлении воздушного потока; она называется лобовым , или аэродинамическим, сопротивлением . Механическая эффективность крыла зависит от его способности развивать большую подъемную силу при небольшом относительном росте лобового сопротивления.

Различают три основных типа полета: машущий, парящий (планирующий) и зависание.

Машущий полет

У таких птиц, как голубь, у которых крылья делают около двух взмахов в секунду, основная мощность развивается при опускании крыльев. Это происходит благодаря сокращению сильно развитых больших грудных мышц , которые одним концом прикреплены к плечевой кости, а другим - к килю грудины. При отрыве от земли крыло в начале маха опускается почти вертикально и его передняя кромка располагается ниже задней. Маховые перья 1-го порядка отклоняются вверх под давлением воздуха. Они плотно сомкнуты, чтобы обеспечить максимальное сопротивление воздуху, а значит, и максимальную подъемную силу. Затем по мере опускания крыло движется вперед и поворачивается таким образом, что его передняя кромка отклоняется вверх. В этом положении крыло создает силу, поднимающую корпус. Воздух, проходящий между маховыми перьями, стремится разделить их и отогнуть кверху (рис. 17.53).

Подъем крыла начинается тогда, когда крыло еще полностью не опущено. Внутренняя часть предплечья резко поднимается вверх и назад, и при этом передняя кромка крыла находится в наклонном положении над задней. Это делают малые грудные мышцы, прикрепленные к дорсальной поверхности плечевой кости и к грудине. При движении крыла вверх оно сгибается в запястье и кисть поворачивается таким образом, что маховые 1-го порядка резко отводятся назад и вверх до того момента, пока все крыло в какой-то мере не выпрямится над телом птицы. Во время этого движения маховые 1-го порядка разъединяются, так что воздух проходит между ними и его сопротивление уменьшается. Движением этих перьев назад в основном и создается мощный толчок, который птица использует для поступательного движения вперед. Еще до того момента, как маховые 1-го порядка поднимутся до высшей точки, снова начинают сокращаться большие грудные мышцы, опускающие крылья, и весь процесс повторяется.

При длительном машущем полете работа крыльев заметно видоизменяется и требует гораздо меньше энергии, чем при отрыве от земли. Взмахи при этом не такие сильные, крылья не соприкасаются за спиной, и нет движения вперед на заключительном этапе опускания крыльев. Крылья обычно выпрямлены, и махи вверх и вниз происходят в запястье (в сочленении костей предплечья и запястья). Активного отведения кисти вверх и назад не происходит - крыло поднимается пассивно в результате давления воздуха на его нижнюю поверхность.

По окончании полета птица приземляется, опуская и распластывая хвост, который одновременно служит тормозом и источником подъемной силы. После создания этой силы ноги опускаются, и птица прекращает движение. Хвост в полете служит также рулем, и устойчивость птицы обеспечивается нервным контролем при участии полукружных каналов. В них возникают импульсы, которые стимулируют вспомогательные мышцы, изменяющие форму и положение крыльев и соотношение между их взмахами.

Разные птицы летают с разными скоростями. Эти различия обусловлены формой крыльев и ее изменениями в полете, а также частотой взмахов. Рис. 17.54 позволяет сравнить крылья быстрых летунов (таких, как стрижи) и медленных (как воробьи).

17.9. Перечислите характерные особенности стрижа, позволяющие ему быстро летать.

Планирующий и парящий полет

При планировании крылья неподвижно распластаны под углом 90° относительно тела, и птица постепенно теряет высоту. Когда птица, планируя, опускается, на нее действует сила тяжести, которую можно разложить на две составляющие, одна из которых (тяга) направлена вперед по линии полета, а другая - вниз под прямым углом к первой (рис. 17.55). С увеличением скорости планирования эту вторую силу уравновешивает возрастающая подъемная сила, а тягу уравновешивает лобовое сопротивление, и с этого момента птица планирует с постоянной скоростью. Скорость и угол скольжения зависят от размеров, формы и угла атаки крыльев и от веса птицы.

Птицы, обитающие на суше, используют при планировании восходящие термальные потоки воздуха, которые возникают, когда горизонтальный поток, встретив преграду (например, гору), отклоняется вверх или когда теплый воздух вытесняется холодным и поднимается вверх; так происходит, например, над городами. Птицы, имеющие легкое тело и широкие крылья, такие как канюки и орлы, искусно используют термальные потоки и могут постепенно набирать высоту, делая небольшие круги. Планирование без потери высоты и даже с подъемом называется парением.

У морских птиц, например альбатросов, форма тела и крыльев иная, и они парят по-другому (рис. 17.56). У альбатроса большое тело и очень длинные узкие крылья, и он использует порывы ветра над волнами. За время скольжения против ветра вверх он поднимается на высоту около 7-10 метров. Затем он разворачивается по ветру и с большой скоростью на отогнутых назад крыльях спускается вниз. В конце скольжения вниз альбатрос описывает дугу, возвращаясь во встречный поток воздуха с крыльями, вынесенными несколько вперед. Такое положение крыльев и быстрое движение вперед относительно воздуха обеспечивают подъемную силу, необходимую для набора высоты перед очередным спуском. Альбатрос способен также парить, покрывая большие расстояния параллельно гребням волн; при этом он использует небольшие восходящие потоки воздуха от волн, подобно тому как сухопутные птицы используют потоки над горными склонами.

Зависающий полет

При зависании птица машет крыльями, но при этом остается на одном месте. Крылья совершают около 50 взмахов в секунду, и развиваемая ими тяга, направленная вверх, уравновешивает вес тела. Птицы, способные зависать, имеют очень сильно развитые летательные мышцы (1/3 от веса тела). Их крылья могут наклоняться почти под любым углом. Большая часть маховых перьев-1-го порядка (маховых 2-го порядка только шесть), и они используются для создания тяги.

Окончание в рот - это одна из безумно популярных предложений интимного характера, которая намеревает выдерживание обычных поз, её способны совершить индивидуалки с сайта

Завоевавшие воздух

Полет птицы

Полет птицы обычно принято сравнивать с полетом самолета. Это сравнение можно проводить лишь до определенных пределов, так как в полете аппаратов с машущими и с неподвижными крыльями есть много различий. Почему птица, которая значительно тяжелее воздуха, все-таки отрывается от земли? Как и в случае с самолетом, это происходит благодаря возникновению аэродинамических сил при поступательном движении. Этих сил две: лобовое сопротивление, стремящееся задержать продвижение вперед, и подъемная сила, поднимающая крыло, а с ним и тело птицы. Чтобы проследить возникновение этих сил, рассмотрим явление подробнее.

Возьмем плоскую пластинку и будем перемещать ее в воздухе (рис. 7). Тогда на нее будут действовать сила тяги и сила сопротивления воздуха. Последняя будет возрастать пропорционально площади пластинки и квадрату скорости движения. При наклонном положении пластинки (рис. 8) она как бы отбрасывает воздух, встречающий ее на пути, вниз, а сама стремится подняться вверх. Реакция воздуха называется силой полного сопротивления. Она, с одной стороны, не пускает пластинку двигаться вперед (лобовое сопротивление), а с другой - поднимает ее вверх (подъемная сила). Угол между горизонтальным направлением и наклоном пластинки называется углом атаки.

У нас получилась почти готовая модель крыла. Осталось только изменить ее форму. Пусть это будет выпукло-вогнутая пластинка, передний конец которой закруглен и утолщен, а задний сходит на нет. Она напоминает профиль крыла птицы (рис. 9).


Ее преимущество в том, что и при нулевом угле атаки, т. е. при движении вперед параллельно своей хорде ab, подъемная сила все равно возникает, что невозможно в случае с пластинкой. При встрече с крылом воздух изменяет свою скорость, она увеличивается над выпуклой поверхностью крыла, а под крыло попадает меньшее число частиц воздуха, и движение их здесь замедлено. Давление воздуха обратно пропорционально скорости его движения. Поэтому под крылом оно увеличено, а над крылом уменьшено. Сгущение струй и наибольшая их скорость у передней, утолщенной части крыла. Максимальную подъемную силу крыло имеет при углах атаки в 16-24°. Это - критические углы атаки.

Подъемная сила возникает в основном между туловищем и кистевым сгибом, а сама кисть крыла, несущая длинные маховые перья, слегка перекручиваясь во время полета, как бы ввинчивается в воздух и создает тягу. Таким образом, главное отличие птицы от самолета в том, что птичье крыло совмещает в себе функции и винта самолета, и его несущих плоскостей, создающих подъемную силу. Вместе они составляют сложнейший аэродинамический комплекс со множеством переменных характеристик, чрезвычайно трудно поддающихся изучению и моделированию. Не вдаваясь в подробности, укажем: представление о том, что птица получает толчок вверх, опуская крылья вниз, а поднимание крыла вызывает опускание птицы, совершенно неверно. Поэтому и приспособлений, уменьшающих сопротивление воздуха при подъеме крыла, у птиц пет. И при подъеме крыла, и при его опускании существует сила, противодействующая силе тяжести. Но тяга возникает только при опускании крыла, да и то лишь в его концевой части: она уравновешивает лобовое сопротивление, действующее во время взмаха.



Желающих подробнее разобраться в механизме полета мы отсылаем к книге Н. А. Гладкова "Биологические основы полета птиц" (М., 1949). Источник энергии для полета лежит в мускулатуре птицы, и работа состоит в преодолении силы тяжести. При неподвижных крыльях источник энергии лежит вне птицы - в движении воздушных масс.

Птицы . Наиболее важной морфологической адаптацией к воздушной среде следует считать крыло.

Крыло - это несущая плоскость, которая формируется маховыми перьями. На пальцах и запястьях находятся 11 маховых перьев 1-го порядка, а на предплечье - 12 маховых перьев 2-го порядка. Основу маховых перьев составляет жесткий стержень, к которому симметрично с двух сторон крепятся бородки, составляющие опахало.

Для того чтобы крыло генерировало подъемную силу, птица должна набрать стартовую скорость. Тогда воздушный поток распределяется относительно плоскости крыла таким образом, что под крылом создается повышенное давление воздуха. Над верхней поверхностью крыла воздух движется быстрее, в результате чего возникает относительное разрежение. Возникает подъемная сила, которой птица манипулирует за счет изменения угла атаки, площади крыла, торможения хвостовыми перьями.

Поддерживается скорость движения в воздухе разными способами. Разные птицы развивают в воздухе различную скорость. Она зависит от размера и формы крыла, способности птицы менять форму крыла в процессе полета, от частоты взмахов крыльями, а также от способности птицы использовать энергию воздушных потоков. Принято выделять несколько типов полета: машущий, планирующий (парящий), зависающий полет.

Машущий полет предполагает наличие у птицы коротких и умеренно широких крыльев и хорошо развитых грудных мышц, как, например, у голубя. Масса грудных мышц которых может достигать 30-40% от массы тела. Частота взмахов крыла у голубя составляет примерно 2 взмаха в 1 секунду, у более крупных птиц она реже. В качестве тормоза птицы используют хвост и частично крылья.

В организации полета важную роль играет оперение птицы. Оно придает телу обтекаемость, амортизирует влияние воздушных потоков. При толчке маховые перья смыкаются за счет сцепления крючков и бороздок и формируют относительно жесткую несущую плоскость крыла. При подъеме крыла перья размыкаются, в результате чего сопротивление воздуха резко уменьшается. При посадке птица прекращает махи крыльями, удерживая их под необходимым углом.

В финальной части в качестве тормоза используются рулевые перья хвоста и маховые перья крыла, которые разворачиваются вентральной поверхностью почти перпендикулярно направлению движения.

Планирующий полет . При планирующем полете птицы используют энергию движения воздушных потоков. Птицы имеют большую площадь крыла или за счет длины (фрегат), или за счет длины и ширины (орлы). При планировании птицы крыло принимает максимальную длину и устанавливается в пределах плоскости движения под углом 90° по отношению к продольной оси тела. При планировании птица перемещаются без потери высоты или даже набирают высоту при минимальных затратах энергии. Снижение при парении также возможно без дополнительных затрат энергии за счет нисходящих воздушных потоков.

Такие птицы, как орлы, коршуны, в меньшей мере вороны, при планировании используют энергию восходящих и нисходящих потоков воздуха. Поверхность земли прогревается и остывает неравномерно. Более теплый воздух вытесняется холодным, вследствие чего имеет место вертикальное перемещение воздушных масс. Кроме того, происходят перемещения воздуха и в горизонтальной плоскости. В горной местности горизонтально перемещающиеся воздушные потоки ударяются в преграду (склон горы) и поднимаются вверх.

У морских птиц (альбатросы, фрегаты) полет несколько отличается от планирующего полета птиц, обитающих на суше.

Они имеют длинные и узкие крылья (у фрегата и альбатроса до 4 м) при довольно крупном теле. Птицы пользуются порывами ветра, которые возникают над волнами. Используя встречные потоки воздуха, птицы набирают высоту. Затем они разворачиваются на 180° и на большой скорости планируют по ветру на отогнутых назад крыльях, теряя при этом высоту. Далее следует разворот по широкой дуге с вынесенными вперед крыльями навстречу воздушному потоку. Подобные маневры доступны и сухопутным птицам. Но и альбатрос периодически парит над волнами за счет восходящих от поверхности воды потоков воздуха так же, как это делают сухопутные птицы.

Зависающий полет . Данный тип движений в воздухе представляется наиболее энергоемким. Чтобы оставаться на месте и не потерять высоту, птицы одновременно должны создавать большую подъемную силу и торможением гасить линейное продвижение. В зависающем полете птицы производят махи крылом с большой частотой (порядка 50 взмахов в секунду). У таких птиц (пустельга, колибри) мышцы, приводящие в движение крыло, имеют очень большую массу. Только грудные мышцы могут иметь массу, составляющую 1/3 от всей массы тела. Тяга создается работой легкого и очень подвижного крыла, в составе которого преобладают длинные и относительно жесткие маховые перья 1-го порядка. Маховых перьев 2-го порядка у птиц, пользующихся зависающим полетом, не 12, а всего 6.

Млекопитающие . Локомоции в воздушной среде у млекопитающих - явление редкое. Наиболее приспособлены к полету летучие мыши. Эти животные неуверенно двигаются на земле (точнее, по вертикальным поверхностям деревьев, пещер), но виртуозно перемещаются в воздушном пространстве. Отдельные виды (например, длиннокрыл) развивают в полете на коротких дистанциях скорость до 35-40 км/час.

Летучие мыши, или рукокрылые (Chiroptera), имеют летательную перепонку большой площади. Она представляет собой складку кожи между передними конечностями, туловищем и задними конечностями, а также между пальцами передних конечностей, туловищем и хвостом. Приводят в движение летательную перепонку гипертрофированная грудная мускулатура и передние конечности. Среди летучих мышей в зависимости от строения летательных перепонок выделяют острокрылых, длиннокрылых, ширококрылых и тупокрылых летучих мышей. Биомеханика движений летучих мышей в воздушной среде принципиально не отличается от таковой птиц.

У рукокрылых можно наблюдать те же три типа полета, что и у птиц: машущий, зависающий (порхающий) и планирующий.

Кроме летучих мышей, локомоции в воздушной среде доступны белкам-летягам, обезьянам и некоторым другим мелким животным, ведущим древесный образ жизни. Среди белок, использующих воздушную среду для линейных перемещений, наиболее известны северная летяга и гигантская летяга. Последняя, несмотря на немалые размеры (длина тела 40-50 см, длина хвоста - до 60 см), хоть и не способна летать по-настоящему, тем не менее за счет планирования покрывает расстояния до 500 м. При этом белка перемещается с одного высокого дерева на другое. За счет таких локомоций грызун избегает опасных соседей на земле и меняет кормовые угодья, не спускаясь на землю. От пяток до запястий у летяг вдоль тела тянутся широкие перепонки, которые при прыжке создают несущую плоскость с довольно большой поверхностью.

Северная летяга мельче. Длина ее тела не превышает 25 см, хвоста - 18 см. Однако и эта белка легко перелетает с дерева на дерево с невысокой скоростью порядка 100 м/мин. Несмотря на то что такой полет имеет пассивный характер, тем не менее, он позволяет белкам решать жизненные задачи: уходить от хищников, находить половых партнеров и осваивать новые пищевые ресурсы.

Рыбы . Полет рыб - явление еще более редкое, чем полет млекопитающих. Однако его эффективность может быть сопоставима с полетом птиц.

Рыбы используют грудные плавники для планирования в воздухе. Так, летучие рыбы при испуге за счет броскового движения туловищных мышц, мышц хвостового стебля и интенсивной работы нижней лопастью хвостового плавника выскакивают из воды и пролетают в воздухе расстояния, позволяющие им избавиться от преследователей.

На поверхности воды летучая рыба достаточно продолжительно работает хвостом, развивая большую тягу, позволяющую ей преодолеть силу притяжения. Скорость полета этих мелких рыб превышает скорость движения преследователей (тунцы, меч-рыба), а пролетаемые ими расстояния достигают нескольких сот метров.

Другие виды рыб, например, пальцекрылы, могут не только парить, но и выполнять сложные маневры в воздухе. Пальцекрыл поднимается к поверхности воды и скользит по ней со скоростью 18 м/с. Такую высокую скорость рыба приобретает благодаря зигзагообразным движениям хвостового плавника с гипертрофированной нижней лопастью.

Скорость полета пальцекрыла сопоставима со скоростью движения современных морских судов и нередко составляет 60-70 км/час. Сильный удар хвоста поднимает рыбку в воздух на высоту 5-7 м. Пальцекрыл пролетает в воздухе до 200 м, используя при этом и воздушные потоки. Рыба способна при необходимости изменить направление полета за счет движений хвостового плавника. У нее также отмечены колебательные движения грудных плавников.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

 

Возможно, будет полезно почитать: