Диагностика технического состояния технологического оборудования. Диагностирование оборудования. Методы и средства диагностического контроля насосных агрегатов

ГОСТ20911-89 предусматривает использование двух терминов: «техническое диагностирование» и «контроль технического состоя­ния». Термин «техническое диагностирование» применяют, когда ре­шаемые задачи технического диагностирования, перечисленные в 1.1, равнозначны или основной задачей являются поиск места и оп­ределение причин отказа. Термин «контроль технического состоя­ния» применяют, когда основной задачей технического диагностиро­вания является определение вида технического состояния.

Различают следующие виды технического состояния, характери­зуемые значением параметров объекта в заданный момент времени:

Исправное - объект соответствует всем требованиям норма­тивно-технической и (или) конструкторской документации;

Неисправное - объект не соответствует хотя бы одному из тре­бований нормативно-технической и (или) конструкторской доку­ментации;

Работоспособное - значения всех параметров, характеризую­щих способность объекта выполнять заданные функции, соответст­вуют требованиям нормативно-технической и (или) конструктор­ской документации;

Неработоспособное - значение хотя бы одного параметра, ха­рактеризующего способность объекта выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) кон­структорской документации;

Предельное - дальнейшая эксплуатация объекта технически невозможна или нецелесообразна из-за несоответствия требованиям
безопасности или неустранимого снижения эффективности работы.

Понятие «исправное состояние» шире, чем понятие «работоспо­собное состояние». Если объект исправен, он обязательно работо­способен, но работоспособный объект может быть неисправным, так как некоторые неисправности могут быть несущественными, не на­рушающими нормальное функционирование объекта.

Для сложных объектов, в частности для магистральных трубо­проводов, допускается более глубокая классификация работоспособ­ных состоянии с выделением частично работоспособного (частично неработоспособного) состояния, при котором объект способен час­тично выполнять заданные функции. Примером частично работо­способного состояния служит такое состояние линейной части маги­стральных трубопроводов, при котором участок способен выполнять требуемые функции по перекачке технологической среды с пони­женными показателями, в частности с пониженной производитель­ностью при снижении допускаемого давления (РД 51-4.2-003-97).



Системой технического диагностирования (контроля технического состояния) называют совокупность средств, объекта и исполнителей, необходимую для проведения диагностирования (контроля) по пра­вилам, установленным в технической документации. Объектами тех­нической диагностики являются технологическое оборудование или конкретные производственные процессы.

Средство контроля - техническое устройство, вещество или мате­риал для проведения контроля. Если средство контроля обеспечивает возможность измерения контролируемой величины, то контроль на­зывают измерительным. Средства контроля бывают встроенными, яв­ляющимися составной частью объекта, и внешними, выполненными конструктивно отдельно от объекта. Различают также аппаратные и программные средства контроля. К аппаратным относят различные устройства: приборы, пульты, стенды и т.п. Программные средства представляют собой прикладные программы для ЭВМ.

Исполнители - это специалисты службы контроля или техниче­ской диагностики, обученные и аттестованные в установленном по­рядке и имеющие право выполнять контроль и выдавать заключения по его результатам.

Методика контроля - совокупность правил применения опреде­ленных принципов и средств контроля. Методика содержит порядок измерения параметров, обработки, анализа и интерпретации резуль­татов.

Для каждого объекта можно указать множество параметров, ха­рактеризующих его техническое состояние (ПТС). Их выбирают в зависимости от применяемого метода диагностирования (контроля). Изменения значений ПТС в процессе эксплуатации связаны либо с внешними воздействиями на объект, либо с повреждающими (деградационными) процессами (процессами, приводящими к деградационным отказам из-за старения металла, коррозии и эрозии, устало­сти и т.д.).

Параметры объекта, используемые при его диагностировании (контроле), называются диагностическими (контролируемыми) па­раметрами. Следует различать прямые и косвенные диагностиче­ские параметры. Прямой структурный параметр (например, износ трущихся элементов, зазор в сопряжении и др.) непосредственно характеризует техническое состояние объекта. Косвенный параметр (например, давление масла, температура, содержание СО 2 в отрабо­танных газах и др.) косвенно характеризует техническое состояние. Об изменении технического состояния объекта судят по значениям диагностических параметров, позволяющих определить техниче­ское состояние объекта без его разборки. Набор диагностических параметров устанавливается в нормативной документации по тех­ническому диагностированию объекта или определяется экспери­ментально.

Количественные и качественные характеристики диагностиче­ских параметров являются признаками того или иного дефекта. У каждого дефекта может быть несколько признаков, в том числе не­которые из них могут быть общими для группы разных по природе дефектов.

Теоретическим фундаментом технической диагностики считают общую теорию распознавания образов, являющуюся разделом техни­ческой кибернетики. К решению задачи распознавания существует два подхода: вероятностный и детерминистский. Вероятностный использует статистические связи между состоянием объекта и диаг­ностическими параметрами и требует накопления статистики соот­ветствия диагностических параметров видам технического состоя­ния. Оценка состояния при этом осуществляется с определенной достоверностью. Детерминистский подход, применяемый чаще все­го, использует установленные закономерности изменения диагно­стических параметров, определяющих состояние объекта.

Помимо теории распознавания, в технической диагностике ис­пользуют также теорию контролеспособности. Контролеспособность определяется конструкцией объекта, задается при его проектирова­нии и является свойством объекта обеспечивать возможность досто­верной оценки диагностических параметров. Недостаточная досто­верность оценки технического состояния является фундаментальной причиной низкой достоверности распознавания состояния оборудо­вания и оценки его остаточного ресурса.

Таким образом, в результате предшествующих исследований ус­танавливают связи между характеристиками диагностических пара­метров и состоянием объекта и разрабатывают диагностические ал­горитмы (алгоритмы распознавания), представляющие собой после­довательность определенных действий, необходимых для постановки диагноза. Диагностические алгоритмы включают также систему ди­агностических параметров, их эталонные уровни и правила принятия решения о принадлежности объекта к тому или иному виду техниче­ского состояния.

Определение вида технического состояния оборудования может производиться как в собранном состоянии, так и после его полной разборки. В период нормальной эксплуатации используют методы безразборной диагностики, как наиболее экономичные. Методы тех­нической диагностики, требующие разборки, обычно применяют при капитальном ремонте оборудования - при дефектации его эле­ментов. Основной проблемой безразборной технической диагности­ки является оценка состояния оборудования в условиях ограничен­ности информации.

По способу получения диагностической информации техниче­скую диагностику разделяют на тестовую и функциональную. В тес­товой диагностике информацию о техническом состоянии получают в результате воздействия на объект соответствующего теста. Тестовая диагностика основана на использовании различных методов неразрушающего контроля. Контроль при этом осуществляется, как пра­вило, на неработающем оборудовании. Тестовая диагностика может производиться как в собранном, так и в разобранном состоянии. Функциональную диагностику проводят только на работающем обо­рудовании в собранном состоянии.

Функциональную диагностику в свою очередь подразделяют на вибрационную и параметрическую диагностики. При использовании функциональной параметрической диагностики оценка техничес­кого состояния осуществляется по величине функциональных параметров оборудования при его работе, при этом подача целена­правленных тестовых воздействий не требуется. Отклонение этих па­раметров от их номинального значения (температура, давление, мощность, количество перекачиваемого продукта, КПД и т.д.) сви­детельствует об изменении технического состояния элементов объ­екта, формирующих данный параметр. Контроль функциональных параметров обычно осуществляется в постоянном режиме оператив­ным обслуживающим персоналом с помощью штатных приборно-измерительных комплексов технологического оборудования. В свя­зи с этим функциональную параметрическую диагностику часто на­зывают оперативной. Способы функциональной параметрической диагностики обычно излагаются в инструкциях и руководствах по эксплуатации соответствующего вида оборудования и в данном по­собии специально не рассматриваются.

Вибрационная диагностика бывает двух видов: тестовая и функ­циональная (см. 2.1). Сущность функциональной вибрационной диагностики заключается в использовании параметров вибрации оборудования при функционировании в рабочих условиях для оценки его технического состояния без разборки. Особенностью функциональной вибрационной диагностики является использова­ние в качестве диагностических не статических параметров типа тем­пературы или давления, а динамических - виброперемещения, виб­роскорости и виброускорения.

Помимо отмеченных выше видов диагностики, для оценки со­стояния оборудования применяют методы разрушающего контроля, предусматривающие частичное разрушение объекта (например, при вырезке проб для установления свойств материалов путем их меха­нических испытаний), а также инструментальный измерительный контроль элементов оборудования при его разборке во время обсле­дования или ремонта. Классификация видов технической диагности­ки приведена на рис. 1.3.

Системы диагностики различаются уровнем получаемой инфор­мации об объекте. В зависимости от решаемой задачи выделяют сле­дующие виды диагностических систем: для разбраковки объектов на исправные и неисправные или для аттестации объектов по классам; поиска и измерения дефектов и повреждений; мониторинга состоя­ния объекта и прогнозирования его остаточного ресурса. Последняя из перечисленных систем является наиболее сложной и применяется для ответственных и дорогостоящих опасных производственных объ­ектов и технологического оборудования. Такие системы, предусмат­ривающие проведение постоянного мониторинга с применением комплекса методов контроля технического состояния, позволяют проводить оперативную корректировку прогнозных оценок определяющих параметров и уточнение остаточного ресурса. В качестве ос­новных методов контроля развития дефектности в комплексных сис­темах мониторинга в настоящее время используют: для емкостного оборудования - акустико-эмиссионный контроль, для машинно­го - контроль вибрационных параметров.

Современное технологическое оборудование представляет собой сложные технические системы. Обеспечение требуемой надежности таких систем, оцениваемой вероятностью безотказной работы Р(1) (см. табл. 1.1), является более проблематичным по сравнению с про­стыми. Надежность любой технической системы определяется на­дежностью составляющих ее элементов. В большинстве случаев для сложных систем контроль одного или нескольких элементов мало­эффективен, так как остается неизвестным состояние остальных.

Составляющие элементы сложных технических систем могут со­единяться между собой последовательным, параллельным или ком­бинированным способами. При последовательном соединении эле­ментов с вероятностью безотказной работы Р 1 Р 2 , ..., Рn вероятность безотказной работы системы определяется из выражения


,

Где P i – вероятность безотказности i-го элемента.

При параллельном соединении

При комбинированном способе вначале определяют вероятность безотказной работы элементов с параллельным соединением, а за­тем - с последовательным.

Способ параллельного соединения дублирующих элементов на­зывается резервированием. Резервирование позволяет резко повы­сить надежность сложных технических систем. Например, если в системе перекачки сырой нефти предусмотрены два независи­мых параллельных насоса с вероятностью безотказной работы Р 1 = Р 2 = 0,95, то вероятность безотказной работы всей системы

Р(t) = 1 - (1 – Р 1)(1 – P 2) = 1 - (1 - 0,95)(1 - 0,95) = 0,998.

Суммарная надежность системы определяется надежностью ее составляющих. Чем больше количество составляющих, из которых состоит система, тем выше должна быть надежность каждой из них. Например, если техническая система состоит из 100 последовательно соединенных элементов с одинаково высокой вероятностью безот­казной работы 0,99, то общая ее надежность будет равна 0,99 100 , что составит около 0,37, т. е. вероятность безотказной работы системы в течение заданного времени t составляет только 37 %. В связи с этим при диагностировании сложных систем, прежде всего включающих большое число составляющих без резервирования, для получения достоверной оценки их надежности необходимо осуществлять сплошной контроль всех составляющих.

Состояние технической системы может описываться множеством параметров. При диагностировании сложных систем, работоспособ­ность которых характеризуется большим числом параметров, возни­кает ряд дополнительных проблем, а именно:

Необходимо установить номенклатуру основных диагностиче­ских параметров, характеризующих работоспособность системы, и задать технические средства их контроля;

По совокупности этих параметров необходимо разработать ал­горитм оценки технического состояния системы и соответствующие программные продукты для ЭВМ.

При проведении диагностики применяют сплошной и выбороч­ный контроль. Крайне важным фактором является то, что примене­ние современных неразрушающих методов позволяет перейти к сплошному контролю. Для сложного технологического оборудова­ния, состоящего из большого числа зависимых элементов, введение сплошного неразрушающего контроля является необходимым усло­вием достоверной оценки его технического состояния.

Диагностика требует определенных затрат, которые растут по мере повышения требований к надежности и безопасности. Для сравнения: в атомной промышленности США затраты на дефекто­скопию составляют до 25% всех эксплуатационных затрат, в Рос­сии - около 4%. По данным ВНИКТИ нефтехимоборудования, за­траты на диагностику нефтехимического оборудования в США со­ставляют около 6% эксплуатационных затрат, в России - менее 1%. Вместе с тем эта статья расходов оправдана, так как использова­ние систем технического диагностирования позволяет эксплуатиро­вать каждый экземпляр технологического оборудования до предель­ного состояния и за счет этого получить значимый экономический эффект.

важный процесс, который должен регулярно проводиться на промышленных предприятиях.

Качественное и своевременное осуществление операций, выполненное согласно нормативным документам, способно предотвратить потенциальные поломки и неполадки специализированного оснащения.

Диагностика технологического оборудования выполняет множество функций и задач.

Одной из приоритетных для данного процесса является обеспечение безопасной и качественной работы станков, аппаратов и машин на отечественных предприятиях. Диагностика также обеспечивает надежность объекта.

Качественно проведенное обследование гарантирует сокращение расхода материальных ресурсов предприятия на обслуживание, а также во время проведения планово-предупредительных ремонтов (ППР).

Выполнение диагностики станков, инструмента, машин дает возможность оценить реальное состояние оснащения на данный момент.

Диагностика также выявляет точное место локации потенциальной или уже существующей неполадки. Оценивая показатели работоспособности оборудования, можно установить мощность и эффективность его трудовой эксплуатации.

С помощью общей оценки технического состояния техники составляется прогноз на его дальнейшее использование и определяется точное время его максимальной эксплуатации на производстве.

К диагностическим параметрам относятся два вида: прямые и косвенные. При этом первые характеризуют непосредственно нынешнее состояние объекта, а вторые говорят о функциональной зависимости прямых параметров.

Методы диагностики технологического оборудования

Диагностика технологического оборудования происходит посредством различных методов, в частности:

  • органолептических;

  • вибрационных;

  • акустических;

  • тепловых;

  • магнитно-порошковых;

  • вихревых;

  • ультразвуковых;

Все эти методы широко распространены при оценке состояния объектов на промышленных предприятиях.

При этом важно помнить, что диагностика технологического оборудования имеет свои недостатки. Одним из них является пропуск неполадки при исследовании. Это в дальнейшем может стать причиной поломки оборудования или привести к получению производственных травм рабочих.

Еще одним большим недостатком технологической диагностики является возникновение большой вероятности, что тревога была ложной и потенциальные угрозы для работы оборудования отсутствуют.

Осмотр агрегатов требует, прежде всего, времени. При этом все оборудование остается не рабочим, что приводит к простаиванию.

Оснащенность материально-технической базы имеет важное значение для каждого предприятия. Особенно тщательно нужно следить за исправностью оборудования, своевременной заменой расходников. Это способствует эффективному функционированию предприятия.

Планово-предупредительные работы на всех организациях осуществляются путем регулярных проверок согласно всем требованиям нормативных документов.

Современные методы диагностирования технологическое оборудование на выставке

Представит лучшие образцы металлообрабатывающей техники, а также инновационные технологии в сфере обработки металлоизделий. В том числе будут обсуждаться современные методы диагностирования технологического оборудования.

Традиционно выставка состоится в международном комплексе «Экспоцентр».

Ведущие отечественные и заграничные специалисты представят последние разработки, расскажут о проблемах и перспективах развития отрасли.

Система технического обслуживания и ремонта общепромышленного оборудования: Справочник Ящура Александр Игнатьевич

3.3. Техническая диагностика оборудования

3.3.1. Техническое диагностирование (ТД) – элемент Системы ППР, позволяющий изучать и устанавливать признаки неисправности (работоспособности) оборудования, устанавливать методы и средства, при помощи которых дается заключение (ставится диагноз) о наличии (отсутствии) неисправностей (дефектов). Действуя на основе изучения динамики изменения показателей технического состояния оборудования, ТД решает вопросы прогнозирования (предвидения) остаточного ресурса и безотказной работы оборудования в течение определенного промежутка времени.

3.3.2. Техническая диагностика исходит из положения, что любое оборудование или его составная часть может быть в двух состояниях – исправном и неисправном. Исправное оборудование всегда работоспособно, оно отвечает всем требованиям ТУ, установленных заводом-изготовителем. Неисправное (дефектное) оборудование может быть как работоспособно, так и неработоспособно, т. е. в состоянии отказа.

3.3.3. Оборудование может отказать в связи с изменением внешней среды и по причине физического износа деталей, находящихся как снаружи, так и внутри оборудования. Отказы являются следствием износа или разрегулировки узлов.

3.3.4. Техническая диагностика направлена в основном на поиск и анализ внутренних причин отказа. Наружные причины определяются визуально, при помощи измерительного инструмента, несложных приспособлений.

Методы, средства и рациональная последовательность поиска внутренних причин отказа зависят от сложности конструкции оборудования, от технических показателей, определяющих его состояние. Особенность ТД состоит в том, что она измеряет и определяет техническое состояние оборудования и его составных частей в процессе эксплуатации, направляет свои усилия на поиск дефектов.

3.3.5. По величине дефектов составных частей (агрегатов, узлов и деталей) можно определить работоспособность оборудования. Зная техническое состояние отдельных частей оборудования на момент диагностирования и величину дефекта, при котором нарушается его работоспособность, можно предсказать срок безотказной работы оборудования до очередного планового ремонта, предусмотренного нормативами периодичности Системы ППР, а также необходимость их корректировки.

3.3.6. Заложенные в основу ППР нормативы периодичности являются опытно усредненными величинами, установленными так, чтобы ремонтные периоды были кратными и привязанными к календарному планированию основного производства (год, квартал, месяц).

3.3.7. Любые усредненные величины имеют свой существенный недостаток: даже при наличии ряда уточняющих коэффициентов они не дают полной объективной оценки технического состояния оборудования и необходимости вывода в плановый ремонт. Почти всегда присутствуют два лишних варианта: остаточный ресурс оборудования далеко не исчерпан, остаточный ресурс не обеспечивает безаварийную работу до очередного планового ремонта. Оба варианта не обеспечивают требование Федерального закона № 57-ФЗ об установлении сроков полезного использования основных фондов путем объективной оценки потребности его постановки в ремонт или вывода из дальнейшей эксплуатации.

3.3.8. Объективным методом оценки потребности оборудования в ремонте является постоянный или периодический контроль технического состояния объекта с проведением ремонтов лишь в случае, когда износ деталей и узлов достиг предельной величины, не гарантирующей безопасной, безотказной и экономичной эксплуатации оборудования. Такой контроль может быть достигнут средствами ТД, а сам метод становится составной частью Системы ППР (контроля).

3.3.9. Другой задачей ТД является прогнозирование остаточного ресурса оборудования и установления срока его безотказной работы без ремонта (особенно капитального), т. е. корректировка структуры ремонтного цикла.

3.3.10. Техническое диагностирование успешно решает эти задачи при любой стратегии ремонта, особенно стратегии по техническому состоянию оборудования. В соответствии с этой стратегией работы по поддержанию и восстановлению работоспособности оборудования и его составных частей должны осуществляться на основе ТД оборудования.

3.3.11. Техническое диагностирование является объективным методом оценки технического состояния оборудования с целью определения наличия или отсутствия дефектов и сроков проведения ремонта, в том числе прогнозирования технического состояния оборудования и корректировки нормативов периодичности ремонта (особенно капитального).

3.3.12. Основным принципом диагностирования является сравнение регламентированного значения параметра функционирования или параметра технического состояния оборудования с фактическим при помощи средств диагностики. Под параметром здесь и далее согласно ГОСТ 19919-74 понимается характеристика оборудования, отображающая физическую величину его функционирования или технического состояния.

3.3.13. Целями ТД являются:

контроль параметров функционирования, т. е. хода технологического процесса, с целью его оптимизации;

контроль изменяющихся в процессе эксплуатации параметров технического состояния оборудования, сравнение их фактических значений с предельными значениями и определение необходимости проведения ТО и ремонта;

прогнозирование ресурса (срока службы) оборудования, агрегатов и узлов с целью их замены или вывода в ремонт.

3.3.14. Прогнозирование периодичности текущего и, особенно, капитального ремонта оборудования возможно лишь при одновременном ТД всех или большинства его составных частей.

3.3.15. Как показывает опыт, наиболее эффективное использование преимуществ ТД достигается тогда, когда на предприятии функционирует специальная задача «Диагностика оборудования», обеспеченная компьютерной техникой.

Несмотря на большое разнообразие применяемых для диагностирования оборудования приборов, монтажных схем датчиков, их конструкторского исполнения и т. д., как показывает отечественный и мировой опыт, подходы к внедрению ТД в практику остаются общими. В Приложении 8 кратко рассмотрена методика и приведен один из общих способов организации ТД на предприятии, а в табл. 3.1 указан перечень диагностических устройств, имеющихся в специальных передвижных ремонтных мастерских.

Таблица 3.1

Перечень диагностических устройств, находящихся в передвижных ремонтных мастерских

Из книги Тайны лунной гонки автора Караш Юрий Юрьевич

Академия наук (АН) СССР и советская научно-техническая элита АН СССР традиционно состояла из ученых, чьи профессиональные карьеры нередко подразумевали высокие посты либо в промышленных, либо в военных организациях. В силу данной особенности академики и

Из книги Творчество как точная наука [Теория решения изобретательских задач] автора Альтшуллер Генрих Саулович

Из книги Правила технической эксплуатации тепловых энергоустановок в вопросах и ответах. Пособие для изучения и подготовки к проверке знаний автора

2.8. Техническая документация на тепловые энергоустановки Вопрос 83. Какие документы хранятся и используются в работе при эксплуатации тепловых энергоустановок?Ответ. Хранятся и используются в работе следующие документы: генеральный план с нанесенными зданиями,

Из книги Правила устройства электроустановок в вопросах и ответах [Пособие для изучения и подготовки к проверке знаний] автора Красник Валентин Викторович

Санитарно-техническая часть Вопрос. Какой системой вентиляции должны быть оборудованы помещения аккумуляторных батарей, в которых производится заряд аккумуляторов, при напряжении более 2,4 В на элемент?Ответ. Должны быть оборудованы стационарной принудительной

Из книги Управление электрохозяйством предприятий автора Красник Валентин Викторович

ГЛАВА 4 НОРМАТИВНО-ТЕХНИЧЕСКАЯ ДОКУМЕНТАЦИЯ В ЭЛЕКТРОУСТАНОВКАХ 4.1. Техническая документация Наличие полной и качественной НТД в электроустановках является важной предпосылкой по организации и поддержанию надлежащего уровня электрохозяйства. Ее недооценка чревата

Из книги Определение и устранение неисправностей своими силами в автомобиле автора Золотницкий Владимир

4.1. Техническая документация Наличие полной и качественной НТД в электроустановках является важной предпосылкой по организации и поддержанию надлежащего уровня электрохозяйства. Ее недооценка чревата нежелательными последствиями.Вся система распределительных

Из книги Ремонт японского автомобиля автора Корниенко Сергей

Диагностика неисправностей рулевого управления и их устранение Повышенная передача но руль дорожных толчков при движении автомобиля. Вибрация и стуки, ощущаемые на рулевом колесе Диагностика элементов рулевого управления сводится к прослушиванию стуков при резких

Из книги Система технического обслуживания и ремонта общепромышленного оборудования: Справочник автора Ящура Александр Игнатьевич

Общая диагностика

Из книги Обслуживаем и ремонтируем Волга ГАЗ-3110 автора Золотницкий Владимир Алексеевич

3.3. Техническая диагностика оборудования 3.3.1. Техническое диагностирование (ТД) – элемент Системы ППР, позволяющий изучать и устанавливать признаки неисправности (работоспособности) оборудования, устанавливать методы и средства, при помощи которых дается заключение

Из книги Советы автомеханика: техобслуживание, диагностика, ремонт автора Савосин Сергей

Техническая характеристика автомобиля ГАЗ-3110 седан Общие данныеЧисло мест (включая место водителя) – 5.Масса снаряженного автомобиля, кг – 1400.Габаритные размеры, мм:– длина – 4880.– ширина – 1800.– высота без нагрузки – 1455.Колесная база (расстояние между осями), мм

Из книги BIOS. Экспресс-курс автора Трасковский Антон Викторович

Сергей Савосин Советы автомеханика: техобслуживание, диагностика,

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

2.3. Диагностика и техническое обслуживание Диагностика – греческое слово, означающее распознавание, определение признаков. Прежде чем приступить к ремонту автомобиля, необходимо провести его тщательную диагностику.Различают субъективную и объективную проверку

Из книги автора

3.2. Диагностика и техническое обслуживание Система электрооборудования автомобиля состоит из источника тока и различных потребителей, обеспечивающих зажигание рабочей смеси, освещение, сигнализацию и системы управления автомобилем. Как уже было сказано ранее,

Из книги автора

4.2. Диагностика и техническое обслуживание 4.2.1. Диагностика и техническое обслуживание сцепленияПри техническом обслуживании сцепления периодически проверяют и регулируют привод. Обслуживание начинают с проверки действия педали. Педаль по всему ходу должна двигаться

Из книги автора

Часть III Диагностика и устранение сбоев и неполадок

Из книги автора

51. Неорганические стекла. Техническая керамика Неорганическое стекло – химически сложные аморфные изотропные материалы, обладающие свойствами хрупкого твердого тела.Стекла состоят:1. Стеклообразователи – основа:а) Si02 – силикатное стекло, если Si02 > 99 %, то это

Значительные расходы на содержание техники, прежде всего, обусловлены низким качеством ее обслуживания и преждевременным ремонтом. Для снижения затрат труда и средств на техническое обслуживание и ремонт необходимо повысить производи­тельность и улучшить качество выполнения этих работ за счет повышения надежности и эксплуатационной технологичности (ремонтопригодности) выпускаемых единиц, развития и лучшего использования производственно-технической базы предприятий, механизации и автоматизации технологических процессов, внедрения средств диагностирования и элементов научной организации труда.

Под надежностью понимают свойство составных частей машины выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных в заданных пределах, соответствующих заданным режимам и условиям использования, технического обслуживания, ремонтов, хранения и транспортирования.

Надежность в процессе эксплуатации зависит от ряда факторов: характера и объема выполняемых машиной работ; природно-климатических условий; принятой системы технического обслуживания и ремонта техники; качества и наличия нормативно-технической документации и средств технического обслуживания, хранения и транспортирования машин; квалификации обслуживающего персонала.

Надежность является комплексным свойством, включающим в себя в зависимости от назначения объекта или условий его эксплуатации ряд простых свойств:

1. Безотказность - свойство объекта непрерывно сохранять работоспособность в течение некоторой наработки или в течение некоторого времени.

2. Долговечность - свойство объекта сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонтов.

3. Ремонтопригодность - свойство объекта, заключающееся в его приспособленности к предупреждению и обнаружению причин возникновения отказов, поддержанию и восстановлению работоспособности путем проведения ремонтов и технического обслуживания.

4. Сохраняемость - свойство объекта непрерывно сохранять требуемые эксплуатационные показатели в течение (и после) срока хранения и транспортирования.

В зависимости от объекта надежность может определяться всеми перечисленными свойствами или некоторыми из них. Например, надежность колеса зубчатой передачи, подшипников определяется их долговечностью, а станка - долговечностью, безотказностью и ремонтопригодностью

Автомобиль - это сложная система, состоящая из тысяч деталей с различными производственными и эксплуатационными допусками. Работа осуществляется в разных условиях, поэтому срок службы однотипных объектов различен – в зависимости от условий эксплуатации, режимов работы и качества элементов. Следовательно, каждую единицу необходимо направлять на ремонт в соответствии с ее фактическим состоянием.

При индивидуальном обследовании (контроль, диагностирование, прогнозирование) устанавливается Истинное техническое состояние каждого агрегата. Здесь может быть учтено влияние всего многообразия условий работы, квалификации оператора и других факторов, от которых зависит техническое состояние объекта.

Отсутствие специального контрольно-диагностического оборудования затрудняет обнаружение многих неисправностей. Старыми (преимущественно субъективными) методами можно выявить только значительные и очевидные отказы и отклонения. Стоимость проверки основных систем такими методами примерно на 70-75% выше, чем при использовании современных диагностических методов.

Метод технического диагностирования - совокупность технологических и организационных правил выполнения операций технического диагностирования.

Диагностика (от греческого diagnostikós – способный распознавать) – отрасль знаний, исследующая техническое состояние объектов диагностирования (машин, механизмов, оборудования, конструкций и других технических объектов) и проявление технических состояний, разрабатывающая методы их определения, при помощи которых дается заключение (ста­вится диагноз), а также принципы построения и организацию использования систем диагностирования. Когда объектами диагностирования являются объекты технической природы, говорят о технической диагностике.

Диагностирование – это совокупность методов и средств для определения основных показателей технического состояния отдельных механизмов и машины в целом без их разборки либо при частичной разборке.

Результатом диагностирования является диагноз - заключение о техническом состоянии объекта с указанием при необходимости места, вида и причины дефекта.

Достоверность диагностирования – вероятность того, что при диагностировании определяется то техническое состояние, в котором действительно находится объект диагностирования.

Техническое состояние - совокупность подверженных изменению в процессе производства или эксплуатации свойств объекта, характеризуемая в определенный момент времени признаками и параметрами состояния, установленными технической документацией на этот объект.

Параметр состояния - физическая величина, характеризующая работоспособность или исправность объекта диагностирования и изменяющаяся в процессе работы.

Диагностическая операция - часть процесса диагностирования, выполнение которой позволяет определить один или несколько диагностических параметров объекта.

Технология диагностирования - совокупность методов, параметров и операций диагностирования, выполняемых планомерно и последовательно в соответствии с технологической документацией для получения конечного диагноза.

На рис. 1показана структура технической диагностики. Она характеризуется двумя взаимопроникающими и взаимосвязанными направлениями: теорией распознавания и теорией контролеспособности. Теория распознавания содержит разделы, связанные с построением алгоритмов распознавания, решающих правил и диагностических моделей. Теория контролеспособности включает разработку средств и методов получения диагностической информации, автоматизированный контроль и поиск неисправностей. Техническую диаг­ностику следует рассматривать как раздел общей теории надежности.

Диагностирование включает три основных этапа:

· получение информации о техническом состоянии объекта диагностирования;

· обработку и анализ полученной информации;

· постановку диагноза и принятие решения.

Первый этап заключается в определении параметров состояния объекта, установлении качественных признаков состояния и получении данных о наработке; второй - в обработке и сравнении полученных значений параметров состояния с номинальными, допускаемыми и предельными значениями, а также использовании полученных данных для прогнозирования остаточного ресурса; третий - в анализе результатов прогнозирования и установлении объема и сроков работ по техническому обслуживанию и ремонту составных частей машины.

Объект диагностирования - изделие и его составные части, подвергаемые диагностированию.

В технической диагностике рассматриваются следующие объекты.

Элемент - простейшая при данном рассмотрении составная часть изделия, в задачах надежности может состоять из многих деталей.

Изделие - единица продукции определенного целевого назначения, рассматриваемая в периоды проектирования, производства, испытаний и эксплуатации.

Система - совокупность совместно действующих элементов, предназначенная для самостоятельного выполнения заданных функций.

Понятия элемента, изделия и системы трансформируются в зависимости от поставленной задачи. Например, при установлении его собственной надежности станок рассматривается как система, состоящая из отдельных элементов - механизмов, деталей и т.п., а при изучении надежности технологической линии - как элемент.

Структура объекта - условная схема его строения, образуемая последовательным расчленением объекта на элементы структуры (составные части, сборочные единицы и т.п.).

При диагностировании различают рабочие воздействия, поступающие на объект при его функционировании, и тестовые воздействия, которые подаются на объект только для целей диагностирования. Диагностирование, при котором на объект подаются только рабочие воздействия, называется функциональным, а диагностирование, при котором на объект подаются тестовые воздействия,- тестовым техническим диагностированием.

Совокупность средств, исполнителей и объектов диагностирования, подготовленная к проверке параметров состояния или осуществляющая ее по правилам, установленным соответствующей документацией, называется системой технического диагностирования.

Диагностирование позволяет: снизить простои машин по техническим неисправностям за счет предупреждения отказов своевременной регулировкой, заменой или ремонтом отдельных механизмов и агрегатов; ликвидировать ненужные разборки отдельных механизмов и агрегатов и снизить скорость изнашивания деталей; правильно установить вид и объем ремонта и снизить трудоемкость текущего ремонта за счет сокращения разборочно-сборочных и ремонтных работ; полнее использовать ресурсы отдельных агрегатов и машины в целом, а следовательно, сократить общее количество ремонтов и расход запасных частей.

Опыт внедрения диагностирования показывает, что межремонтный ресурс увеличивается в 1,5...2 раза, число отказов и неисправностей уменьшается в 2...2,5 раза, а затраты на ремонт и техническое обслуживание сокращаются на 25...30%.

Кроме того система технических обслуживаний по фиксированному ресурсу (среднестатистическая система) не обеспечивает высокой надежности и минимальных затрат. Эта система постепенно отмирает, все шире внедряется новый и более экономичный метод обслуживания и ремонта по фактическому техническому состоянию (диагностическая система). Что позволяет полнее использовать межремонтный ресурс машин, устранить необоснованную разборку механизмов, сократить простои вследствие технических неисправностей, снизить трудоемкость технического обслуживания и ремонта. Эксплуатация по техническому состоянию может принести выгоду, эквивалентную стоимости 30% общего парка машин.

В некоторых случаях целесообразно использование комбинированного (смешанного) диагностирования - представляющего совокупность регламентированного технического диагностирования и диагностирования по техническому состоянию.

Для диагностической и комбинированной систем требуются новые методы ис­следования, иной математический аппарат. В основу должна быть положена теория надежности. Необходимо глубже изучать и учитывать изменения физических законо­мерностей отказов, износов и старения деталей в механических системах. Важная роль в совершенствовании управления надежностью подвижного состава принадлежит разработке и внедрению методов прогнозирования технического состояния агрегатов автомобилей.

Цели и задачи технической диагностики. Связь диагностики и надежности

Целью технической диагностики является повышение надежности и ресурса технических систем. Мероприятия по сохранению надежности машин направлены на снижение скорости изменения параметров состояния (главным образом скорости изнаши­вания) их составных частей и предотвращение отказов. Как известно, наиболее важным показателем надежности является отсутствие отказов во время функционирования (работы) технической системы.

Техническая диагностика благодаря раннему обнаружению дефектов и неисправностей позволяет устранить отказы в процессе технического обслуживания, что повышает надежность и эффективность эксплуатации.

  • 2.5. Пуск оборудования в эксплуатацию. Эксплуатационная обкатка машин
  • 3. Режимы работы и эффективность использования оборудования
  • 3.1. Сменный, суточный и годовой режимы
  • Работы оборудования
  • 3.2. Производительность и норма выработки машин
  • 3.3. Стоимость эксплуатации оборудования
  • 3.4. Анализ эффективности работы оборудования
  • 4. Надежность оборудования и ее изменение при эксплуатации
  • 4.1. Показатели надежности оборудования
  • 4.2. Общие принципы сбора и обработки
  • Статистической информации о надежности
  • Оборудования при эксплуатации
  • Сбор информации об отказах оборудования
  • Обработка эксплуатационной информации по отказам
  • Оценка надежности оборудования
  • 4.3. Поддержание надежности оборудования при эксплуатации
  • На этапе эксплуатации оборудования
  • 5. Причины отказов оборудования при эксплуатации
  • 5.1. Специфика условий эксплуатации оборудования для бурения скважин, добычи и подготовки нефти и газа
  • 5.2. Деформация и изломы элементов оборудования
  • 5.3. Износ элементов оборудования
  • 5.4. Коррозионные разрушения элементов оборудования
  • 5.5. Сорбционные разрушения элементов оборудования
  • 5.6. Коррозионно-механические разрушения элементов оборудования
  • 5.7. Сорбционно-механические разрушения элементов оборудования
  • 5.8. Образование на поверхностях оборудования отложений твердых веществ
  • 6. Организация технического обслуживания, ремонта, хранения и списания оборудования
  • 6.1. Система технического обслуживания и ремонта оборудования
  • Виды технического обслуживания и ремонта оборудования
  • Стратегии то и р оборудования
  • Организация и планирование то и р оборудования по наработке
  • Организация и планирование то и р оборудования по фактическому техническому состоянию
  • 6.2 Смазочные материалы и спецжидкости назначение и классификация смазочных материалов
  • Жидкие смазочные материалы
  • Пластичные смазочные материалы
  • Твердые смазочные материалы
  • Выбор смазочных материалов
  • Способы смазки машин и смазочные устройства
  • Жидкости для гидравлических систем
  • Тормозные и амортизаторные жидкости
  • Использование и хранение смазочных материалов
  • Сбор отработанных масел и их регенерация
  • 6.3. Хранение и консервация оборудования
  • 6.4. Гарантийные сроки и списание оборудования
  • Списание оборудования
  • 7. Диагностика технического состояния оборудования
  • 7.1. Основные принципы технического диагностирования
  • 7.2. Методы и средства технической диагностики
  • Средства диагностики технического состояния оборудования
  • Методы и средства диагностического контроля насосных агрегатов
  • Методы и средства диагностического контроля трубопроводной запорной арматуры
  • 7.3. Методы и технические средства дефектоскопии материала деталей машин и элементов металлоконструкций
  • 7.4. Методы прогнозирования остаточного ресурса оборудования
  • 8. Технологические основы ремонта оборудования
  • 8.1. Структура производственного процесса ремонта оборудования
  • Индивидуальным методом
  • 8.2. Подготовительные работы для сдачи оборудования в ремонт
  • 8.3. Моечно-очистные работы
  • Состав смывок для очистки поверхности от лакокрасочных покрытий
  • 8.4. Разборка оборудования
  • 8.5. Контрольно-сортировочные работы
  • 8.6. Комплектование деталей оборудования
  • 8.7. Балансировка деталей
  • 8.8. Сборка оборудования
  • 8.9. Приработка и испытание агрегатов и машин
  • 8.10. Окраска оборудования
  • 9 Способы восстановления сопряжений и поверхностей деталей оборудования
  • 9.1. Классификация способов восстановления сопряжений
  • 9.2. Классификация способов восстановления поверхностей деталей
  • 9.3. Выбор рационального способа восстановления поверхностей деталей
  • 10 Технологические методы, применяемые для восстановления поверхностей и неразъемных соединений ремонтируемых деталей
  • 10.1. Восстановление поверхностей наплавкой
  • Ручная газовая наплавка
  • Ручная электродуговая наплавка
  • Автоматическая электродуговая наплавка под слоем флюса
  • Автоматическая электродуговая наплавка в среде защитных газов
  • Автоматическая вибродуговая наплавка
  • 10.2. Восстановление поверхностей металлизацией
  • 10.3. Восстановление поверхностей гальваническим наращиванием
  • Электролитическое хромирование
  • Электролитическое осталивание
  • Электролитическое меднение
  • Электролитическое никелирование
  • 10.4. Восстановление поверхностей деталей пластическим деформированием
  • 10.5. Восстановление поверхностей полимерным покрытием
  • Полимерных покрытий:
  • 10.6. Восстановление поверхностей механической обработкой
  • 10.7. Соединение деталей и их отдельных частей методами сварки, пайки и склеивания соединение деталей сваркой
  • Соединение деталей пайкой
  • Склеивание деталей
  • 11 Типовые технологические процессы ремонта деталей
  • 11.1. Ремонт деталей типа валов
  • 11.2. Ремонт деталей типа втулок
  • 11.3. Ремонт деталей типа дисков
  • Ремонт зубчатых колес
  • Ремонт цепных колес
  • 11.4. Ремонт корпусных деталей
  • Ремонтных деталей:
  • Ремонт корпуса вертлюга
  • Ремонтных деталей:
  • Ремонт корпуса крейцкопфа бурового насоса
  • Ремонт клапанных коробок буровых насосов
  • Дополнительных ремонтных деталей:
  • Ремонт корпусов задвижек фонтанной и трубопроводной запорной арматуры
  • Ремонт корпуса турбобура
  • Способом замены части детали:
  • 7. Диагностика технического состояния оборудования

    7.1. Основные принципы технического диагностирования

    Диагностика - отрасль науки, изучающая и устанавливающая признаки состояния системы, а также методы, принципы и средства, при помощи которых дается заключение о характере и существе дефектов системы без ее разборки и производится прогнозирование ресурса системы.

    Техническая диагностика машин представляет систему методов и средств, применяемых при определении технического состояния машины без ее разборки. При помощи технической диагностики можно определять состояния отдельных деталей и сборочных единиц машин, производить поиск дефектов, вызвавших остановку или ненормальную работу машины.

    На основе полученных при диагностике данных о характере разрушения деталей и сборочных единиц машины в зависимости от времени ее работы техническая диагностика позволяет прогнозировать техническое состояние машины на последующий срок работы после диагностирования.

    Совокупность средств диагностирования, объекта и исполнителей, действующих по установленным алгоритмам, называется системой диагностирования.

    Алгоритм - это совокупность предписаний, определяющих последовательность действий при диагностировании, т.е. алгоритм устанавливает порядок проведения проверок состояния элементов объекта и правила анализа их результатов. Причем безусловный алгоритм диагностирования устанавливает заранее определенную последовательность проверок, а условный - в зависимости от результатов предыдущих проверок.

    Техническое диагностирование - это процесс определения технического состояния объекта с определенной точностью. Результатом диагностирования служит заключение о техническом состоянии объекта с указанием при необходимости места, вида и причины дефекта.

    Диагностирование - один из элементов системы ТО. Основная его цель - достижение максимальной эффективности эксплуатации машин и, в частности, сведение до минимума затрат на их ТО. Для этого дают своевременную и квалифицированную оценку технического состояния машины и разрабатывают рациональные рекомендации по дальнейшему использованию и ремонту сборочных.единиц (обслуживанию, ремонту, дальнейшей эксплуатации без обслуживания, замене сборочных единиц, материалов и т.п.).

    Диагностирование проводят как при ТО, так и при ремонте.

    При ТО задачи диагностирования заключаются в том, чтобы установить потребность в проведении капитального или текущего ремонта машины или ее сборочных единиц; качество функционирования механизмов и систем машин; перечень работ, которые необходимо выполнить при очередном техническом обслуживании.

    При ремонте машин задачи диагностирования сводятся к выявлению сборочных единиц, подлежащих восстановлению, а также оценке качества ремонтных работ. Виды технического диагностирования классифицируют по назначению, периодичности, месту проведения, уровню специализации (табл. 7.1). В зависимости от парка машин диагностирование проводят силами Эксплуатационного предприятия или на специализированных предприятиях технического сервиса.

    Диагностирование, как правило, совмещают с проведением работ по ТО. Кроме того, при возникновении отказов машины проводят углубленное диагностирование по заявке оператора.

    В последнее время появилась сеть малых предприятий по оказанию услуг технического сервиса машин, в том числе и диагностирования, т.е. диагностирование в этом случае выводится из состава работ по ТО и становится самостоятельной услугой (товаром), которая оказывается по заявке клиента как в период эксплуатации, так и при оценке качества ремонта, остаточной стоимости работ по восстановлению работоспособности и исправности машин, а также при купле и продаже машин, бывших в употреблении.

    Работы по диагностированию на эксплуатационном предприятии проводятся в зависимости от размера и состава парка машин на специализированном участке (посту) диагностирования или на участке (посту) ТО. Объектом технической диагностики может быть техническое устройство или его элемент. Простейшим объектом технической диагностики будет кинематическая пара или сопряжение. Однако в класс рассматриваемых объектов может быть включен агрегат любой сложности. Диагностируемый объект можно рассматривать в двух аспектах: с точки зрения структуры и способа функционирования. Каждый из аспектов имеет особенности, описываемые своей системой понятий.

    Под структурой системы понимается определенная взаимосвязь, взаиморасположение составных частей (элементов), характеризующих устройство и конструкцию системы.

    Параметр - качественная мера, характеризующая свойство системы, элемента или явления, в частности процесса. Значение параметра - количественная мера параметра.

    Объективные методы диагностирования дают точную количественную оценку сборочной единицы, машины. Они основаны на использовании как специальных контрольно-диагностических средств (оборудования, приборов, инструмента, приспособлений), так и устанавливаемых непосредственно на машинах или входящих в комплект инструмента машиниста.

    Таблица 7.1

    Виды диагностирования и области их применения

    Квалифицирующий признак

    Вид диагностирования

    Область применения

    Основные задачи

    По месту диагностирования

    По объему

    По периодичности

    По уровню специализации

    Эксплуатационное

    Производственное

    Частичное

    Плановое (регламентированное)

    Внеплановое (причинное)

    Специализированное

    Совмещенное

    При техническом обслуживании, осмотрах, возникновении отказов и неисправностей

    При ремонте машин на ремонтных предприятиях

    При входном и выходном контроле машин в ремонтном производстве

    При технических осмотрах

    При периодическом ТО и осмотрах

    При возникновении отказов и неисправностей

    При обслуживании машин на сервисных предприятиях и силами ЦБПО При ремонте машин

    При обслуживании машин эксплуатационным предприятием и силами ЦБПО

    Определение остаточного ресурса сборочных единиц и потребности в регулировочных работах. Установление объема и качества ремонтных работ, обнаружение неисправностей, оценка готовности машин к работам

    Определение остаточного ресурса сборочных единиц. Контроль качества ремонтных работ

    Определение остаточного ресурса сборочных единиц, проверка качества их функционирования, выявление перечня регулировочных работ, предотвращение отказов

    Определение перечня необходимых регулировочных работ, проверка готовности машин к работе или качества их хранения, выявление неисправностей с последующим их устранением

    Предотвращение отказов, определение остаточного ресурса, установление перечня регулировочных работ, проверка качества обслуживания и ремонта машин

    Выявление отказов и неисправностей с последующим их устранением

    Проведение диагностирования, предусмотренного ТО-3 и после межремонтной наработки

    Определение остаточного ресурса сборочных единиц, проверка качества ремонта

    Диагностирование с последующим обслуживанием машины, проверка потребности машин в ремонте с устранением дефектов. Выявление и устранение дефектов при возникновении отказов

    Объективное диагностирование разделяют на прямое и косвенное

    Прямое диагностирование - это процесс определения технического состояния объекта по его структурным параметрам (зазорам в подшипниковых узлах, в клапанном механизме, в верхних и нижних головках шатунов кривошипно-шатунного механизма, биению валов, размерам деталей, доступных для непосредственного измерения, и др.).

    Сборочные единицы и машину в целом диагностируют по структурным параметрам с помощью универсальных измерительных приборов: калибров, щупов, масштабной линейки, штангенциркулей, микрометров, зубометров, нормалемеров и др. Это позволяет получать точные результаты. Недостаток такого метода заключается в том, что он во многих случаях требует разборки объекта диагностирования. Последнее значительно увеличивает трудоемкость работ и нарушает приработку сопряженных поверхностей. Поэтому в практике прямое диагностирование, как правило, проводят в тех случаях, когда структурные параметры объекта диагностирования можно замерить без разборки сопряженных поверхностей.

    Косвенное диагностирование - это процесс определения фактического состояния объекта диагностирования по косвенным, или, как их называют, диагностическим параметрам.

    В качестве косвенных показателей используют изменение параметров рабочих процессов, структурных шумов, содержания продуктов износа в масле, мощности, расхода топлива и др.

    Сам процесс диагностирования проводят с помощью манометров, вакуумметров, пьезометров, расходомеров, пневматических калибраторов, дымомеров и различных специальных приборов.

     

    Возможно, будет полезно почитать: