Лекции по технологическому оборудованию пищевых производств. Оборудование пищевых производств. Лекции, практические занятия, срсп, консультации

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Классификация оборудования пищевых производств и требования к нему

Все технологические машины и аппараты можно классифицировать по виду процессов, происходящих в сырье, полуфабрикатах и готовых изделиях в ходе технологической обработки. В этом случае технологические машины и аппараты могут быть объединены в следующие группы:

технологические машины и аппараты для выполнения гидромеханических процессов (оборудование для осаждения, фильтрования, псевдосжижения, перемешивания, мойки, очистки, разделки, протирки);

технологические машины и аппараты для выполнения теплообменных и массообменных процессов (оборудование для тепловой обработки, экстракции, сушки и выпечки);

технологические машины и аппараты для выполнения механических процессов (оборудование для измельчения, взвешивания, дозирования, прессования, просеивания, калибрования, формования, упаковывания).

Требования, предъявляемые к аппаратам

Целесообразно построенный аппарат должен удовлетворять эксплуатационным, конструктивным, эстетическим, экономическим требованиям и требованиям техники безопасности.

Эксплуатационные требования

Соответствие аппарата целевому назначению. Целевое назначение аппарата заключается в создании условий, оптимальных для проведении процесса. Эти условия определяются типом процесса, агрегатным состоянием обрабатываемых масс, их химическим составом и физическими свойствами (вязкость, упругость, пластичность и т.п.). Аппарату должна быть придана форма, которая обеспечила бы необходимые технологические условия протекания процесса (давление, при котором проходит процесс; скорость движения и степень турбулизации потока обрабатываемых масс; создание необходимого контакта фаз; механические, тепловые, электрические и магнитные воздействия). Рассмотрим элементарный пример. Требуется подогреть и перемешать вязкий раствор, содержащий взвешенные частицы термонеустойчивого вещества (например, раствор сахара, содержащий кристаллы сахаря). Для этой цели могут быть применены два аппарата. В аппарате, изображенном на рис. 1, неизбежно осаждение частиц твердого вещества на дне и в углах. В этих местах будет происходить пригорание и разрушение продукта. Следовательно, форма этого аппарата но создает необходимых для протекания процесса условий. В большей степени удовлетворяет целевому назначению аппарат, изображенный на рис. 2. Аппарат имеет сферическое днище, сопряженное г цилиндрическим корпусом, и мешалку якорного типа. Все эго предотвращает образование осадка и пригорание его на стенках днища. Из приведенного примера видно, что, для того чтобы сконструировать аппарат, необходимо знать и учитывать свойства обрабатываемой системы. Пренебрежение технологическими требованиями ведет к порче продукта.

Высокая интенсивность работы аппарата. Одной из основный характеристик аппарата является его производительность-количества сырья, перерабатываемого в аппаратах за единицу времени, или количество готового продукта, выдаваемого аппаратом за единицу времени. При выработке штучных изделий производительность выражается количеством штук изделии за единицу времени. При выработке массовой продукция производительность выражается в массовых или объемных единицах за единицу времени. Интенсивность работы аппарата - это его производительность, отнесенная к какой-либо основной единице, характеризующей данный аппарат. Так, интенсивность работы сушилки выражается количеством удаленной из материала за 1 ч воды, отнесенным к 1 м 3 объема сушилки; интенсивность работы выпарных аппаратов - количеством выпариваемой за 1 ч воды, отнесенным к 1 м 2 поверхности нагрева.

Очевидно, что для достижении большой производительности при малых габаритных размерах аппаратов интенсификация процесса является основной задачей производства. Пути, которыми она достигается, различны для разных типов аппаратов. Однако можно установить некоторые общие методы повышения интенсивности работы аппаратов, не зависящие от их устройства.

Интенсификация может быть достигнута, например, путем замени периодических процессов непрерывными: при этом ликвидируются затраты времени на вспомогательные операции, становится возможной автоматизация управления. В ряде случаев интенсивность работы аппарата может быть повышена увеличением скоростей движения его рабочих органов.

Устойчивость материала аппарата против коррозии. Материал, из которого построен аппарат, должен быть устойчивым при воздействии на него обрабатываемых сред, В свою очередь, продукты взаимодействия среды и материала не должны обладать вредными свойствами в том случае, если продукт используется для питания.

Малый расход энергии. Энергоемкость аппарата характеризуется расходом энергии на единицу перерабатываемого сырья или выпускаемой продукции. При прочих равных условиях аппарат считается тем совершеннее, чем меньше энергии расходуется на единицу сырья или продукции.

Доступность для осмотра, чистки и ремонта. Для правильной эксплуатации аппарата его подвергают систематическим осмотрам, чистке и текущему ремонту. Конструкция аппарата должна обеспечивать возможность производить эти операции без длительных остановок.

Надежность. Надежность аппарата и машины - способность выполнять заданные функции, сохранить свои эксплуатационные показатели в заданных пределах в течение требуемого промежутка времени.

Надежность аппарата обусловливается его безотказностью, ремонтопригодностью, долговечностью. Надежность и долговечность - показатели, имеющие большое значение и определяющие целесообразность устройства аппарата.

Требования техники безопасности. Эргономика

На социалистических предприятиях к аппаратам предъявляются требования безопасности к удобства обслуживания. Аппарат должен быть рассчитан и сооружен с надлежащим запасом прочности, снабжен оградительными устройствами для движущихся частей, предохранительными клапанами, автоматическими выключателями и другими приспособлениями для предотвращения взрывов и аварий. Операции по загрузке сырья и выгрузке готовой продукции должны быть удобны и безопасны для рабочего персонала. Это обеспечивается целесообразной конструкцией люков и вентилей. Наиболее безопасны герметически закрытые аппараты непрерывного действия с непрерывным потоком материалов.

Для удобства обслуживания управление аппаратом должна производиться из одного пункта, где установлен пульт управления. Это особенно легко осуществить, если организованы дистанционный контроль и дистанционное управление аппаратом. Высшей формой является полная автоматизация контроля и управления. Управление аппаратом не должно требовать значительной затраты физического труда.

Большие неудобства в обслуживании и опасность для рабочих дает применение ременной передачи для приводя аппарата. С этой точки зрения следует предпочитать индивидуальный электропривод.

В условиях технической революции большое значение получила эргономика - наука о приспособлении условии труда к человеку. Эргономика рассматривает практические вопросы, возникающие при организации работы человека, с одной стороны, и механизмом и элементов материальной среды - с другой,

В современных условиях, когда человек, управляющий процессом, имеет дело с быстропротекающими интенсивными процессами, возникает насущная потребность приспособления их к. физиологическим и психологическим возможностям человека дли обеспечения условий наиболее эффективной работы, которая не создает угрозы здоровью человека и выполняется им при меньшей затрате сил. При построении аппаратов требования эргономики заключаются в том, чтобы трудовой процесс аппаратчика был приспособлен к его физическим и психическим возможностям. Это должно обеспечить максимальную эффективность труда и устранить возможную угрозу для здоровья.

Еще одно важное требование, специфическое для аппаратов пищевых производств, вытекает из назначении продукции пищевых предприятий. На пищевых производствах должны быть обеспечены высокие санитарно-гигиенические условия, предотвращающие возможность инфицирования продукции или загрязнения ее продуктами воздействия среды и материала, из которого построек аппарат. Это обеспечивается герметичностью аппаратов, конструктивными формами, позволяющими производить тщательную очистку, автоматизацией, дающей возможность вести процесс без прикосновения человеческих рук, подбором соответствующего материала для построения аппарата.

Конструктивные и эстетические требования

К эти и группе относятся требования, связанные с проектированием, транспортированием и установкой аппарата. Основные из них следующие: стандартность и заменяемость деталей аппарата; наименьшая трудоемкость при сборке; удобство транспортирования, разборки и ремонта; минимальная масса как всего аппарата, так и его отдельных частей.

Рассмотрим требования, предъявляемые к массе аппарата. Уменьшение массы аппарата снижает его стоимость. Оно может быть достигнуто за счет устранения излишних запасов прочности, а также при изменении формы аппарата. Так, при конструировании аппаратов цилиндрической формы, если представляется возможность, следует выбирать такое отношение высоты к диаметру, при котором отношение площади поверхности к объему будет минимальным. Известно, что площадь поверхности цилиндрических сосудов с плоскими крышками минимальна при Н/Д = 2. При таком отношении минимальна и масса металла, расходуемого на построение цилиндрического аппарата. Расход металла может быть уменьшен также при замене плоских крышек выпуклыми. Во многих случаях к значительному уменьшению массы аппарата приводит переход от клепаных конструкций к сварным, рационализация устройства отдельных узлов, применение металлов повышенной прочности и пластических материалов (текстолита, винипласта и др.).

При проектировании аппаратов необходимо также обращать внимание на технологичность оборудования. Технологичной (с точки зрения машиностроения) называют такую конструкцию, которая может быть изготовлена с наименьшими затратами времени и труда.

Аппарат должен иметь по возможности приятную для взгляда форму и окраску.

Экономические требования

Понятие об оптимизации при проектировании. Экономические требования, предъявляемые к аппаратам, могут быть разделены на две категории: требования к проектированию и сооружению аппаратов и требования к построенной машине, находящейся в эксплуатации.

С точки зрения этих требований стоимость проектирования, сооружении и эксплуатации машины должна быть возможно более низкой.

Аппараты, удовлетворяющие эксплуатационным и конструктивным требованиям, неизбежно отвечают также и экономическим требованиям. При внедрении новой техники и более современных аппаратов может случиться, что более современный аппарат окажется более дорогим. Однако в этом случае, как правили, стоимость эксплуатации аппаратов уменьшается, а качество продукции улучшается, и, таким образом, внедрение нового аппарата становится целесообразным. Более подробно экономические требования рассматриваются в курсах организации производства и экономики промышленности.

При проектировании аппарата необходимо стремиться к тому, чтобы процесс, протекающий в нем, осуществлялся в оптимальном варианте. Задача оптимизации заключается к той, чтобы выбрать такой вариант, при котором величина, характеризующая работу аппарата (критерий оптимальности), имела оптимальное значение. В качестве критерия оптимальности чаще всего выбирают стоимость продукции. В таком случае перед проектировщиком ставится задача - спроектировать аппарат с такими данными, которые обеспечат минимальную себестоимость продукции.

Главнейшим этапом оптимизации являются выбор критерия оптимизации и составление математической модели аппарата. Пользуясь этой моделью, при помощи электронных вычислительных машин находят оптимальный вариант решения .

полирование шлифование пищевой

2 . Ме ханические процессы

Шлифование

Шлифование и полирование применяется при переработке проса, овса и кукурузы (шлифование), риса, гороха, ячменя и пшеницы (шлифование и полирование).

При шлифовании с поверхности шелушенного зерна удаляют плодовые и семенные оболочки, частично алейроновый слой и зародыш.

Шлифование улучшает внешний вид, сохраняемость и кулинарные свойства крепы. Однако шлифование снижает биологическую ценность крупы, так как с клетчаткой и пентозанами удаляется значительная часть витаминов, полноценных белков, минеральных веществ, находящихся в зародыше, алейроновом слое и наружных частях мучнистого ядра .

Оборудование для шлифования зерна и крупы

Вальцедековый станок СВУ - 2 (рис.) предназначен для шелушения гречихи и проса. Имеет одну деку. Зерно шелушится между абразивным барабаном и неподвижной абразивной или резиновой декой.

Вальцедековый станок СВУ-2

Из приемного бункера 7 посредством питающего валка 2 и шарнирной заслонки 3 зерно, распределяясь по длине вращающегося барабана 4 и деки 5, попадает в рабочую зону 6. Основа барабана - цилиндр из листовой стали с угольниками 7, расположенными по образующим. Для регулирования размера и формы рабочей зоны служит механизм, состоящий из декодержателя 8 и подвижной части 9 суппорта, которые посредством гайки 10 и винта 77 могут перемещаться по суппорту 12. Поворачивая винт посредством штурвала 14, можно изменять размер и форму рабочей зоны станка. Это необходимо, например, для шелушения гречихи, когда требуется придать рабочей зоне серповидную форму.

В нижней части декодержателя установлены с обеих сторон штыри 18, соединенные с винтовой тягой 19. Поворачивая маховик 20, можно изменять положение деки и придавать рабочей зоне клиновидную форму - оптимальную для шелушения проса. Продукты шелушения удаляются из машины через патрубок 17. Машина приводится в движение от электродвигателя 15 через клиноременную передачу 16. Для того чтобы снять деку, суппорт 12 вместе с декой поворачивают на соответствующий угол вокруг оси 13. Достаточно высоких технологических показателей достигают, применяя для шелушения гречихи песчаниковые барабан и деку, а для шелушения проса - абразивный барабан и эластичную деку из специальных резинотканевых пластин марки РТД.

Для шелушения гречихи необходимо через 24…36 ч насекать песчаниковый барабан и деку бороздками глубиной 1,0…1,2 мм с наклоном 4…5° к образующей. Число бороздок принимают 4…6 на 1 см окружности барабана в зависимости от крупности обрабатываемых зерен. При шелушении проса нужно каждые 3…4 дня восстанавливать шероховатую поверхность абразивного барабана и притирать к валку прорезиненную деку.

Рабочая поверхность барабана при обработке: гречихи - песчаниковая, проса - абразивная. Рабочая поверхность деки при обработке: гречихи - песчаниковая, проса - резиновая. Форма рабочей зоны станка при шелушении: гречихи - серповидная, проса - клиновидная.

Шелушильно-шлифовальная машина A1 - З ШН - З (рис. 4) предназначена для шелушения ржи и пшеницы при обойных помолах и ржаных сортовых помолах на мукомольных заводах, шлифования и полирования ячменя при выработке перловой крупы, шелушения ячменя на комбикормовых заводах. Ситовой цилиндр 4 машины установлен в корпусе 5 рабочей камеры, вал 3 с абразивными кругами 6 вращается в двух подшипниковых опорах 8 и 12. В верхней части он пустотелый и имеет шесть рядов отверстий, по восемь отверстий в каждом ряду.

Шелушильно-шлифовальная машина Al-ЗШН-З

На машине установлены приемный 7 и выпускной 1 патрубки. Последний снабжен устройством для регулирования продолжительности обработки продукта. Отводящий трубопровод крепят к фланцу патрубка, установленного в зоне кольцевого канала (для вывода мучки) корпуса 2. Привод машины осуществляется от электродвигателя 9 через клиноременную передачу 11. Корпус 5 рабочей камеры присоединен к корпусу 2, который в свою очередь устанавливается на станине 10.

Зерно, подлежащее обработке, через приемный патрубок поступает в пространство между вращающимися абразивными кругами и неподвижным перфорированным цилиндром. Здесь благодаря интенсивному трению при продвижении зерна к выпускному патрубку происходит отделение оболочек, основная масса которых через отверстия перфорированного цилиндра и далее через кольцевую камеру удаляется из машины.

С помощью клапанного устройства, размещенного в выпускном патрубке, регулируют не только количество выпускаемого из машины продукта, но и одновременно время его обработки, производительность машины и технологическую эффективность процесса шелушения, шлифования и полирования. Воздух засасывается через пустотелый вал и имеющиеся в нем отверстия, проходит через слой обрабатываемого продукта. Вместе с оболочками и легкими примесями через ситовой цилиндр он поступает в кольцевую камеру и далее в аспирационную систему.

Одна из наиболее часто встречающихся неисправностей - повышенная вибрация машины, которая происходит из-за износа абразивных кругов. Большой износ кругов приводит также и к уменьшению интенсивности обработки. Поэтому за состоянием кругов необходимо тщательно следить и своевременно заменять их. При замене перфорированного цилиндра необходимо освободить от крепления только одну крышку, снять ее, а затем через образовавшуюся кольцевую щель вынуть цилиндр.

Шелушильно-шлифовальные машины Al-ЗШН-З выпускают в четырех исполнениях с абразивными кругами для различных размеров зерен (от 80 до 120).

Шлифовальная машина А1 - Б ШМ - 2,5 (рис. 5) предназначена для шлифования риса-крупы.

Шлифовальная машина А1-БШМ - 2,5

Шлифованию подвергается шелушеный рис с содержанием нешелушеных зерен не более 2%. Шлифовальная машина состоит из двух шлифовальных секций 15 и 19, смонтированных в корпусе, и рамы 4. Каждая шлифовальная секция имеет питатель 18, приемный патрубок 12, откидную крышку 16, ситовой барабан 9, шлифовальный барабан 8, разгрузитель и электродвигатель 20.

Машина снаружи закрыта стенками 7 и 7. Под шлифовальными секциями 15 и 19 установлен бункер 2 для сбора и вывода мучки из машины. Привод имеет защитное ограждение 13 и дверцу 14 для технического обслуживания.

В питателе 18 установлены две заслонки, одна из которых открывает или перекрывает доступ продукта в машину, вторая 11 служит для регулирования количества подаваемого в машину продукта. Ситовой барабан 9 состоит из двух полуцилиндров. К каркасу каждого цилиндра крепят сито при помощи двух рядов гонков и винтов. Оба полуцилиндра стягивают между собой четырьмя лентами.

Шлифовальный барабан 8 набран из абразивных кругов. Со стороны поступления продукта он имеет шнековый питатель 10, а со стороны выхода - крыльчатку 5. Разгрузитель 6 представляет литой стакан с отверстием, которое перекрывается грузовым клапаном. На рычаге клапана по резьбе перемещается груз.

Рисовая крупа через питатель поступает в шлифовальную секцию и шнеком подается в рабочую зону, где, проходя между вращающимися шлифовальным и ситовым барабанами с гонками, подвергается шлифованию. Мучка при этом через сито просыпается в бункер 2 и выводится самотеком из машины. Шлифованная крупа, преодолевая усилие грузового клапана, поступает в патрубок 3 и также выводится из машины.

Настройка шлифовальной машины заключается в выборе оптимальной продолжительности обработки рисовой крупы. Для этого, как указано выше, разгрузители снабжены грузовыми клапанами, позволяющими путем изменения положения грузов на рычагах регулировать усилие подпора в рабочей зоне. Наблюдая визуально через люк разгрузочного патрубка за выходящим продуктом, а также за нагрузкой электродвигателя по показанию амперметра, подбирают требуемое усиление грузового клапана и положение нижней заслонки питателя .

3. Гидромеханические процессы

Основные закономерности фильтрования

Ввиду небольшого размера отверстий в слое осадка и фильтровальной перегородке, а также малой скорости движения жидкой фазы в них можно считать, что фильтрование протекает в ламинарной области. При этом условии скорость фильтрования в каждый данный момент прямо пропорциональна разности давлений и обратно пропорциональна вязкости жидкости фазы и общему гидравлическому сопротивлению слоя осадка и фильтровальной перегородки. В связи с тем, что в общем случае в процессе фильтрования значения разности давлений и гидравлического сопротивления слоя осадка с течением времени изменяются, то переменную скорость фильтрования w (м/сек) выражают в дифференциальной форме, а основное уравнение фильтрования имеет вид:

где V - объем фильтрата, м 3 ; S - поверхность фильтрования, м 2 ; - продолжительность фильтрования, сек; - разность давлений, Н/м 2 ; - вязкость жидкой фазы суспензии, Нсек/м 2 ; R oc - сопротивление слоя осадка, м -1 ; R ф.п. - сопротивление фильтровальной перегородки (его можно считать приблизительно постоянным).

Величина R ос по мере увеличения толщины слоя осадка изменяется от нуля в начале фильтрования до максимального значения в конце процесса. Для интегрирования уравнения (1) необходимо установить зависимость между R ос и объемом полученного фильтрата. Учитывая пропорциональность объемов осадка и фильтрата, обозначим отношение объема осадка V ос к объему фильтрата V через х 0 . Тогда объем осадка V ос = х 0 v. Вместе с тем объем осадка может быть выражен как V ос = h oc S, где h oc - высота слоя осадка. Следовательно:

Отсюда толщина равномерного слоя осадка на фильтровальной перегородке составит:

а его сопротивление

где r o - удельное сопротивление слоя осадка, м -2 .

Подставив значение R oc из выражения (3) в уравнение (1) получим:

. (4) .

Литература

1. Драгилев А.И., Дроздов В.С. Технологические машины и аппараты пищевых производств. - М.: Колос, 1999, - 376 с.

2. Стабников В.Н., Лысинский В.М., Попов В.Д. Процессы и аппараты пищевых производств. - М.: Агропромиздат, 1985. - 503 с.

3. Товароведение продовольственных товаров / Р.З. Григорьева. Кемеровский технологический институт пищевой промышленности. - Кемерово, 2004. - 116 с.

4. Машины для шелушения и шлифования зерновых культур. http://www.znaytovar.ru/s/Mashiny_dlya_shelusheniya_i_shlifova.html

5. Процессы и аппараты пищевых производств: конспект лекций по курсу ПАПП Часть 1. Иванец В.Н., Крохалев А.А., Бакин И.А., Потапов А.Н. Кемеровский технологический институт пищевой промышленности. - Кемерово, 2002. - 128 с.

Размещено на Allbest.ru

Подобные документы

    Исследование ассортимента гречневой крупы. Общая классификация процессов и аппаратов пищевых и химических производств. Технология производства и выработки гречневой крупы. Характеристика оборудования на примере комплексного цеха по переработке гречихи.

    курсовая работа , добавлен 17.11.2014

    Внедрение средств автоматизации, способствующей повышению одиночной мощности агрегатов и производственной мощности предприятий. Классификация пищевых производств по различным признакам. Основные свойства различных видов сырья, его пищевая ценность.

    контрольная работа , добавлен 04.02.2016

    Изучение законов науки о процессах пищевых производств. Рассмотрение механических, гидромеханических и массообменных процессов на примере работы оборудования для переработки зерна, смесителя жидких продуктов и сушки в сушилках. Решение основных задач.

    контрольная работа , добавлен 05.07.2014

    Технико-экономический расчет концентрирования томат-пасты в однокорпусной и двухкорпусной выпарных установках. Расчет производственных рецептур и оборудования для выпечки формового ржано-пшеничного хлеба. Блок-схему производства.

    контрольная работа , добавлен 26.04.2007

    Технологии пищевых производств и разработка систем автоматизации химических процессов. Математическая модель материалов и аппаратов, применяемых для смешивания. Описание функциональной схемы регулирования количества подаваемых на смеситель компонентов.

    курсовая работа , добавлен 12.07.2010

    Технология пищевого производства, ассортиментный состав карамельных изделий, оценка их качества, требования к упаковке и условиям хранения, недопустимые дефекты. Технико-экономический расчет концентрирования томат-пасты в однокорпусной выпарной установке.

    контрольная работа , добавлен 24.11.2010

    Гидравлические сопротивления движения различных газожидкостных потоков в трубах. Струйное диспергирование газовой фазы измельчения в вибрационной сушилке. Расчет прочности сосудов давления пищевых производств. Кожухотрубный струйно-инжекционный аппарат.

    контрольная работа , добавлен 23.08.2013

    Принципы и закономерности технической эксплуатации оборудования автотранспортного предприятия, определение потребности в нем. Механизация производственных процессов. Классификация технологического оборудования и требования, предъявляемые к нему.

    дипломная работа , добавлен 28.12.2010

    Роль пищевых волокон в рационе человека. Характеристика технологической схемы и оборудования, необходимого для производства хлеба белого формового из пшеничной обойной муки с добавлением пищевых волокон, а именно отходов свеклосахарного производства.

    курсовая работа , добавлен 26.11.2014

    Понятие, сущность и оснащение современных супермаркетов. Общая характеристика, назначение, классификация, технологические требования, конструкция и правила эксплуатации наиболее часто применяемых видов теплового и холодильного оборудования супермаркетов.

Министерство образования и науки Республики Казахстан

Алматинский технологический университет

Типовая учебная программа дисциплины «Процессы и аппараты пищевых производств» для студентов дневной формы обучения

Преподаватель: Таубаев Талгат Мухажанович – кафедры «Механизация и автоматизация производственных процессов»

Семестр 2009-2010 учебного года

Специальность: 050727 - Технология продовольственных продуктов, 050728 - Технология перерабатывающих производств

Срок обучения – 4 года

Академическая степень – бакалавр

Название, номер (код) курса и количество кредитов:

Процессы и аппараты пищевых производств

Количество кредитов – 3

Семестр – 2,3

Форма итогового контроля (Final Examination) – Устный экзамен и тестирование. Устныйэкзамен проводит преподаватель, тестирование - ЦТ АТУ.

2.Пререквизиты курса (предварительные требования): высшая математика, физика

3.Постреквизиты: оборудование пищевых производств, технология пищевых производств.

4. Цель курса: Создание у студентов основ теоретической подготовки для овладевания знаниями по специальным курсам. Формирование у студентов научного мышления, понимания физико-химической сущности основных процессов, которые являются общими для многих отраслей пищевой промышленности, а также овладение знаниями принципов устройства и методов расчета аппаратов, предназначенных для проведения этих процессов. Освоение студентами методик проведения экспериментальных исследований, обработки полученных результатов, оценки степени их достоверности и определение погрешности измерений. К окончанию курса студенты должны иметь набор учебно-практических материалов (конспекты лекций, практических и лабораторных занятий, отчеты по СРС).

5.Краткое описание курса: Особенностью курса является изучение общих принципов всех технологических процессов с целью познания их внутренних закономерностей, а также освоение научно обоснованных методов расчета процессов и аппаратов. Курс состоит из лекций, практических и, лабораторных занятий, самостоятельной работы студентов. Курс лекций состоит из 6 разделов (блоков): 1 - общие сведения, классификация и принципы разработки процессов и аппаратов; 2 – основы гидравлики; 3 – гидромеханические процессы; 4 – механические процессы; 5 – тепловые процессы; 6 – массообменные процессы. На лекциях студенты должны получить теоретические знания оп изучаемому предмету. На практических занятиях студенты получают навыки расчета технологических процессов и аппаратов пищевых производств: определение материальных и тепловых потоков, геометрических размеров и конструктивных особенностей аппаратов, их производительности. Лабораторные занятия способствуют приобретению студентами навыков научных исследований, проведения экспериментов и обработки полученных результатов. СРС способствует развитию умения работы с литературными источниками, закреплению навыков в проведении расчетов. Оценка усвоения пройденного материала осуществляется с помощью промежуточного контроля – 3 контрольные работы в форме тестов, финальных экзаменов: устного и тестирования.



6. Информация об оценках:

Промежуточные виды контроля - 60 баллов (проставляет преподаватель)

Финальный устный экзамен - 15 баллов (проставляет преподаватель)

Финальное тестирование - 25 баллов (проставляет ЦТ АТУ)

Максимальное количество баллов, проставляемое за различные виды работ и формы контроля, приведено в таблице 1. Максимальный балл проставляется студенту при полном выполнении задания в указанные сроки, неполное или несвоевременное выполнение не позволяет получить максимальный балл и оценивается в процентах от максимального значения (0, 25, 50 и 75%).

Таблица 1

Итоговые оценки проставляются в балльной, буквенной и традиционной форме.

Сроки проведения промежуточного контроля:

Время сдачи домашних заданий, отчетов по СРС: суббота 9.30-11.20.

Внимание! При успешном освоении курса и своевременном выполнении всех заданий студент имеет право на получение максимальной оценки по финальному устному экзамену на основании своего рейтинга.

7.Данные о преподавателе .

Преподаватель: Таубаев Талгат Мухажанович – преподаватель кафедры «Механизация и автоматизация производственных процессов » АТУ

Офис: Алматы, ул. Толе би, 100, корпус №3, каб. 303

Телефон: 92-47-90 (внутренний - 215)

Время пребывания: 9.00 – 17.00 – ежедневно, кроме субботы и воскресения, в субботу – 9.30 – 12.00.

2 курс, русское отделение:

Лекции, Практические занятия, СРСП, Консультации:

8.Политика и процедура: запрещены опоздания, неуважительные пропуски занятий, несвоевременное предоставление работ, отсутствие на экзамене.

Требования к студентам:

· отработка пропущенных занятий по уважительным причинам в субботу 9.30-11.30;

· активно участвовать в учебном процессе;

· самостоятельно заниматься в библиотеке, дома, в Интернет-классе.

Нормы академической этики: Конфликтные ситуации должны открыто обсуждаться в академических группах.

9. Календарный и тематический план лекций, занятий:

Темы лекций

Лекция (неделя) Дата Тема и содержание лекции Тема СРСП, СРС Литература (разделы, страницы)
29.01.2009 Введение. Цель и задачи дисциплины. Основные понятия и определения. Общие закономерности протекания технологических процессов, их классификация. Основные этапы проектирования аппаратов. Элементы теории подобия и моделирование. Требования, предъявляемые к аппаратам. Классификация процессов по классам, группам и видам
5.02.2009 Гидравлика. Свойства жидкостей. Основные законы гидростатики: Эйлера, Паскаля, Архимеда. Уравнение равновесия Эйлера. Сообщающиеся сосуды.
12.02.2009. Основы гидродинамики. Режимы движения. Законы гидродинамики: неразрывности, Бернулли. Гидродинамическое подобие. Распределение скоростей жидкости. Уравнение движения Эйлера.
19.02.2009 Истечение жидкостей. Основы реологии. Критерии гидродинамического подобия.
26.02.2009 Гидравлические машины. Насосы. Компрессорные машины. Характеристика центробежного насоса.
09.10.2009 Гидромеханические процессы. Характеристики дисперсных систем. Перемешивание и диспергирование. Пенообразование, взбивание, псевдоожижение. Распыливание жидкостей. Процессы мойки.
7 – 1 рейтинг 5.03.2009 Разделение гетерогенных жидкостных систем. Разделение в поле силы тяжести и в поле центробежных сил. Сепараторы.
12.03.2009 Фильтрование, мембранные методы разделения. Обратный осмос, ультрафильтрация. Газоочистка. Газоочистка.
19.03.2009. Механические процессы. Основные понятия. Измельчение материалов. Основы теории измельчения. Циклы и способы измельчения. Прессование. Сущность и назначение процессов, их классификация. Основные факторы, влияющие на процесс прессования. Аппаратурное оформление процессов. Смешивание и сортировка сыпучих материалов.
26.03.2009 Тепловые процессы. Общие сведения. Сущность и способы тепловой обработки. Теоретические основы теплообмена. Теплопроводность, теплоотдача, теплопередача, тепловое излучение, смешанный теплообмен. Основные критерии теплового подобия. Критериальные уравнения.
2.04.2009 Типы теплообменных аппаратов, классификация, устройство, применение. Основы расчеты тепловой аппаратуры. Интенсификация тепловых процессов. Аппараты с рубашкой, с внутренней поверхностью теплообмена, с лучистым теплообменом.
9.04.2009 Специфические процессы общего назначения. Пастеризация, стерилизация, выпаривание. Основы расчета и аппараты. Процессы замораживания и размораживания их виды и сущность, уравнения теплового и материального балансов, аппараты. Процессы варки и жарки.
16.04.2009 Массообменные процессы. Теоретические основы массообменных процессов. Уравнение молекулярной диффузии. Массопроводность, массоотдача, массопередача. Классификация массообменных процессов. Вывод уравнения молекулярной диффузии.
23.04.2009 Сорбционные процессы. Абсорбция и адсорбция. Основные понятия, уравнение фазового равновесия, материальный баланс процессов, аппараты. Экстракция. Сущность и назначение процесса, уравнение материального баланса, аппараты. Ректификация и простая перегонка. Сущность процессов, материальный и тепловой баланс, аппараты. Десорбция.
15 – 2 рейтинг 30.04.2009 Сушка. Физическая сущность процесса, влаго- и термовлагопроводность. Кинетика сушки, кривые сушки и скорости сушки. Основы расчета процесса. Виды сушки, аппараты. Растворение и кристаллизация. Сущность и назначение процессов. Кинетическое уравнение и его анализ, аппаратурное оформление. Физические, химичесике и электрофизические методы обработки пищевых продуктов.

10. Календарный и тематический план лабораторных занятий.

Перечень лабораторных работ (методические указания к лабораторным работам получить у преподавателя на кафедре МАПП, корп. №1, ауд. № 609).

Семестр 2

Конспект лекций по курсу «Процессы и аппараты пищевых производств»

ЛЕКЦИЯ 1

ОБЩИЕ ЗАКОНОМЕРНОСТИ

В основе всех технологических производств лежат законы сохранения энергии и массы:

1. тепловой баланс

2. материальный баланс

Теплота в изобарных условиях без изменения агрегатного состояния:

Процесс – последовательные и закономерные изменения в системе, приводящие к возникновению в ней новых свойств.

Машина – механизм (их сочетание) предназначенных для преобразования механической энергии в полезную работу.

Аппарат – устройство для проведения какого-либо процесса.

Классификация процессов:

1. Организационно-техническая:

А) периодический

Б) непрерывный

В) комбинированный

2. По отношению ко времени:

А) установившиеся П≠ f (τ) П – параметр процесса

Б) неустановившееся П= f (τ)

3. По кинетическим закономерностям:

Скорость процесса прямо пропорциональна движущейся силе и обратно сопротивлению:

где х – движущая сила.

А) гидромеханические: X r =Δp

Б) механические: X M =ΔF

В) тепловые:X T =Δt

Г) массообменные: X мо =Δс

Д) химические

Е) микробиологические

Ж) электрофизические: X эл =ΔU

Для описания состояния и его изменения различных тел используют физические величины, для их измерения – единицы системы СИ.

Разработка новых процессов и аппаратов состоит из нескольких стадий:

1. Разработка технического предложения

2. Создание эскизного проекта

3. Создание технического проекта

4. Создание конструкторской документации

Данные стадии предусматривают аналитические и экспериментальные исследования – для этого теория моделирования:

1. Математическое моделирование:

1.1. Детерминированный подход – анализ элементарных явлений.

1.2.Стохатический – изучение влияния входных параметров на выходные.

2. Физическое моделирование – изучение процессов на конкретных моделях.

Основы теории подобия:

1. Процессы, происходящие в модели и натуральном аппарате, должны описываться одинаковыми уравнениями

2. Модель должна быть геометрически подобна натуральному образцу

3. Значения начальные и граничных условий процесса, выраженные в виде критериев, должны быть одинаковыми.

4. Все критерии и безразмерные компоненты во всех сходных точках должны быть одинаковыми.

Требования, предъявляемые к аппаратам:

1. Технологические – качество, короткое время, энерго-ресурсосберегающие.

2. Эксплуатационные – простота обслуживания при минимальных затратах и времени, доступность для ремонта и чистки.

3. Энергетические – энергосбережение.

4. Конструктивные – унификация, стандартизация, снижение материалоемкости, эстетичность и т.д.

5. Экономические

6. Защита окружающей среды.

ЛЕКЦИЯ 2

ОСНОВЫ ГИДРАВЛИКИ

Жидкость рассматривают как непрерывно материальную среду.

Ее свойства:

1) плотность (кг/м 3)

2) удельный объем

3) упругость (коэффициент объемного сжатия)

модуль объемной упругости

4) коэффициент температурного расширения

5) Поверхность натяжения

6) Капиллярность

7) Вязкость

Где v – скорость, h – линейный размер поперечного сечения

Согласно уравнению Ньютона для ньютоновской жидкости удельная сила трения определяется:

Неньютоновские жидкости (Бингама) – тесто, фарш, творог.Для них: (2)

s ут – удельная сила трения, Па

s пт – предельное значения силы трения (Па), свыше которого жидкость приходит в движение.

Гидростатика

Основное уравнение гидростатики Эйлера :

(1)

(2)

Закон Паскаля

Обозначим h = Z 1 - Z 2 – глубина погружения.

Тогда из уравнения (2):

Давление на глубине h увеличивается на величину гидростатического давления gh.

Следствие: Давление создаваемое в любой точке передается всем точкам объема жидкости.

Закон Архимеда :

На тело, погруженное в жидкость, действует выталкивающая сила равная весу вытесненной воды.


Рисунок 2.2- К закону Архимеда Рисунок 2.3 – Сообщающиеся сосуды

dp 1 = ж gh 1 dS

p 2 = ж gh 2 dS

dp b = dp 2 - dp 1 = ж ghdS

Сила тяжести p b = r t gV

Результирующая: р r =р т -p b =V(r т -r ж)g

Если r т >r ж , то (+ Р р) – тело тонет.

Если r т , то (- Р р) – тело всплывает.

Сообщающиеся сосуды


Отсюда: , если , то

ЛЕКЦИЯ 3

Гидродинамика

Изучает закономерности движения жидкостей.

Основные понятия:

1.Объемный расход V = v ср S

2.Массовый расход М=r v ср S

3.Средняя скорость v с р=

Гидравлический радиус канала r гид = , П - смоченный периметр

Эквивалентный диаметр: d э =4r гид

Режимы течения

1. Ламинарный - слои жидкости движутся параллельно друг другу без ускорения или равноускоренно.

2. Турбулентный – слои перемешиваются, наблюдаются завихрения и пульсации.


Рисунок 2.4 – Распределение Рисунок 2.5 – К уравнению скоростей неразрывности

Критерий Рейнольдса:

Rе=

Re кр =2320

v max = (p 1 -p 2) v r = v max ()

Уравнение неразрывности

V = v ср S = const

Объемный расход через любое сечение потока жидкости величина постоянная.

Уравнения движения Эйлера

- ускорение

M - сила, вызывающая движение m=rdV

Рисунок 2.6 – К уравнениям движения Эйлера

На элементарный объем действует силы давления и тяжести:

В равновесии приравниваем к силам вызывающим движение. После преобразования:

(1)

Уравнение Бернулли

Сложив и продифференцировав (1), получаем уравнение Бернулли для идеальной жидкости (без трения):


Рисунок 2.7 – К уравнению Бернулли

В соответствии с рисунком 2.7 с учетом потерь напора на преодоление сил трения можно записать:

(для реальной жидкости)

где , - полный напор Н

Z 2 – геометрический напор

Статический (пьезометрический) напор

Скоростной (динамический) напор

h – потеря напора. Возникает за счет трения. Коэффициенты потери напора по длине трубопровода:

ламинарный , турбулентный

Гидравлические сопротивления (трение и места возникновения):

1. Вводный и переходной патрубки 4. Поворот трубы

2. Сосуд большого объема 5. Вентили, краны

3. Сужение, расширение

Энергетический смысл уравнения Бернулли:

H – полная энергия;

Z – потенциальная энергия;

– удельная кинетическая энергия

Основы гидродинамического подобия

1. Геометрическое подобие

2. Гидродинамическое подобие – подобны поля физических величин характеризующих явление

критерий Ньютона ;

; Ne м – модель, Ne н – натура.

Критерий Фруда: , - соотношение силы тяжести и инерции;

Критерий Эйлера: , - соотношение силы давления и инерции;

Критерий Галлилея: , - соотношение силы вязкого трения и тяжести;

Критерий Грасгофа: , - соотношение силы вязкого трения и подъемной сила;

Критерий гомохронности: - неустановившийся характер движения.

Расчет диаметров трубопроводов

Важно при проектировании

Уравнение объемного расхода: . Отсюда определяют диаметр:

1¸3 м/с (для капельных жидкостей)

8 – 15 м/с (газ, воздух при небольшом давлении)

15 – 20 м/с (газ, воздух при высоком давлении)

20 – 30 м/с (насыщенный пар)

30 – 50 м/с (перегретый пар)

ЛЕКЦИЯ 4

Истечение жидкости

Используем уравнение Бернулли. Сначала исследуем истечение при постоянном уровне:

Н и – избыточное давление в метрах водяного столба.

Для получения струй применяются насадки (l /d=3¸5)


1 - Цилиндрические (j и =0,8), 2 - Конические: А - сужающиеся (j и =0,9–0,95, для дальнобойной струи), Б – расширяющиеся (j и =0,5–0,55, для большого расхода при малой кинетической энергии), 3 – Коноидальные (j=0,97).

Рисунок 2.9 - Насадки

Сила действия струи:

На плоскую стенку: F=rVu

На выпуклую стенку: F=rVu(1 – Cos a)

На вогнутую стенку: F=2rVu

Основы реологии

Неньютоновские жидкости (3 основные группы):

1. Скорость сдвига зависит от направления и не зависит от продолжительности воздействия – вязкие:

а) бингамовские s>s кр – коэффициент пластической вязкости (густые суспензии, пасты);

б) псевдопластичные малые значения s кр – кажущаяся вязкость h к, который уменьшается с увеличением градиента скорости (суспензии с асимметричными частицами);

в) дилантные - h к растет с увеличением градиента скорости (суспензии с большим количеством твердой фазы);

а) тиксотропные – со временем падает напряжение сдвига (разрушается структура);

б) реопектические – со временем растет напряжение сдвига.

3. Вязкоупругие (максвелловские) – текут при приложении напряжения, а после снятия восстанавливают частично форму (тесто).

При расчете трубопроводов определяют объемный расход:

где М – массовый расход, кг/с.

Затем - диаметр:

ЛЕКЦИЯ 5

Гидромашины

Технологические процессы требуют перемешивание, перекачивание, подвод и отвод жидкостей и газов.

Для жидкостей – насосы;

Для газов – компрессорные машины.

Определение напора, создаваемого насосом


Рисунок 2.10 – Определение необходимого напора насоса

Н г – высота геометрического подъема жидкости. Называют также полным напором;

Н н – высота нагнетания;

Н в – высота всасывания.

Н гсв – гидросопротивление во всасываемом трубопропроводе;

Н гсн – гидросопротивление в нагнетающем трубопроводе.

Если давление в резервуарах различно:

Теоретическая высота всасывания может быть равна атмосферному давлению, однако сильно зависит от температуры (закипание).

Так при t = 0 o C ® H B = 9 м, а при t = 65 o C ® H В =0

Насосы делятся на:

1) поршневые (плунжерные): простого и двойного действия, многоплунжерные


Рисунок 2.11 – Плунжерный насос

Двойного действия

2) центробежные: одно- и многоступенчатые – для перемешивания маловязких жидкостей. Перед пуском должен быть заполнен, поэтому устанавливается ниже уровня жидкости (рисунок 2.12)


Б - Винтовой насос В - Струйный насос

А - Мембранный насос

Рисунок 2.14 - Насосы

2.Компрессорные машины

Применяются для перемещения газов и делятся в зависимости от соотношения давлений на выходе Р 2 и входе Р 1 на:

1) вентиляторы: Р 2 / Р 1 < 1,1

2) газодувки: Р 2 / Р 1 < 3

3) компрессоры: Р 2 / Р 1 > 3

КРАТКАЯ АННОТАЦИЯ МОДУЛЯ

Пищевая промышленность удовлетворяет потребности населения в пищевых продуктах. По размеру она производит около пятой части валовой продукции промышленности в Беларуси. В пищевой промышленности занято около 9% всего промышленно-производственных фондов страны.

О большом значении пищевой промышленности свидетельствует и то, что ее продукция составляет более 90% всего потребляемого населением продовольствия.

В состав пищевой промышленности входит много различных производств. При всем разнообразии технологии все эти производства объединяет, прежде всего общность назначения их продукции. Важнейшими отраслями пищевой промышленности являются: мукомольная, крупяная, хлебопекарная, сахарная, кондитерская, мясная, рыбная, консервная, маслобойная, сыроваренная, чайно-кофейная, винодельческая, пивоваренная и др.

Пищевая промышленность характеризуется чрезвычайно широким размещением. Широкому ее размещению способствует большое разнообразие и распространенность ее сырьевых ресурсов. Однако отдельные ее отрасли по особенностям их размещения сильно отличаются друг от друга, и в этом отношении пищевую промышленность можно разделить на три группы отраслей.

Одну группу составляют отрасли, перерабатывающие нетранспортабельное (или малотранспортабельное) сырье (свеклосахарная, плодоперерабатывающая промышленность, винодельческая, винокуренная промышленность). Эти отрасли размещают в районах производства сырья.

Другую группу составляют отрасли, перерабатывающие транспортабельное сырье и выпускающие малотранспортабельную или скоропортящуюся продукцию (хлебопечение, некоторые производства кондитерской, лекарственная, пивоваренная промышленности и др.) их размещают в районах потребления продукции.

В третью группу входят отрасли, которые можно размещать как в сырьевых, так и в потребительских районах (в зависимости от обстоятельств).

Дидактический модуль «Основные технологические процессы пищевых производств» рассчитан на самостоятельное изучение студентами экономических специальностей ряда вопросов организации технологических процессов хлебобулочного производства, переработки мяса и молока. Изучая данную тему, они должны получить четкое понятие о технико-экономических показателях эффективности технологий пищевых производств.

ТЕМАТИЧЕСКИЙ ПЛАН

1. Технология хлебобулочного производства.

2. Технология мяса и мясопродуктов.

3. Технология переработки молока.

1. ТЕХНОЛОГИЯ ХЛЕБОБУЛОЧНОГО ПРОИЗВОДСТВА

Процесс производства хлеба и булочных изделий слагается из 6 этапов:

1. прием и хранение сырья;

2. подготовка к пуску в производство;

3. приготовление теста;

4. разделка теста;

5. выпечка;

6. хранение выпеченных изделий и отправка их в торговую сеть.

Прием и хранение сырья охватывает период приема, перемещения в складские помещения, последующее хранение всех видов основного и дополнительного сырья, поступающего на хлебопекарное производство. К основному сырью относят муку, воду, дрожжи и соль, а к дополнительному - сахар, жировые продукты, яйца и другие виды сырья.

От каждой партии сырья берется анализ на соответствие их нормативам для производства определенных видов хлебобулочных изделий.

Подготовка сырья к пуску заключается в том, что на основании данных анализов отдельных партий муки, имеющихся на хлебозаводе, сотрудники лаборатории устанавливают целесообразно с токи зрения хлебопекаренных свойств смесь отдельных партий муки. Смешивание муки отдельных партий осуществляется в мукосмесителях, из которых смесь направляется на контрольный просеиватель и в бункер-накопитель, из которого по мере необходимости будет подаваться на приготовление теста.

Вода хранится в емкостях - баках холодной и горячей воды, из которых поступает в дозаторы, обеспечивающих ее необходимую температуру для приготовления теста.

Соль предварительно растворяется в воде, раствор фильтруется, доводится до необходимой концентрации и направляется для приготовления теста.

Прессованные дрожжи предварительно измельчаются и в мешалке превращаются в смеси с водой в суспензию, затем поступают для приготовления теста.

Приготовление теста. При безопарном способе приготовление теста состоит из следующих процессов:

Дозирование сырья. Соответствующими дозирующими устройствами отмериваются и направляются дежу тестомесильной машины необходимые количества муки, воды заданной температуры, дрожжевой суспензии, раствора соли и сахара.

Замес теста. После заполнения дежи необходимыми компонентами включают тестомесильную машину и производят замес теста. Замес должен обеспечивать однородное по физико-механическому составу тесто.

Брожение и обминка теста. В замешенном тесте происходит процесс спиртового брожения, вызываемый дрожжами. Углекислый газ, выделяющийся при брожении разрыхляет тесто, за счет чего оно увеличивается в объеме.

Для улучшения физико-механических свойств тесто во время брожения подвергают одной или нескольким обминкам. Обминка заключается в том, что тесто в деже повторно перемешивается 1 - 3 минуты. Во время обминки из теста механически удаляется излишняя часть углекислого газа.

Общая продолжительность брожения теста составляет 2 -4 часа. После брожения дежу с готовым тестом с помощью дежеопрокидывателя поворачивают в положение, при котором тесто выгружается в бункер - тестоспуск, расположенный под тестоделительной машиной.

Разделка теста. Деление теста на куски осуществляется на тестоделительной машине. Куски теста с делительной машины поступают в тестокруглитель, затем проходят несколько операций по формированию нужной формы хлебобулочного изделия. Поле этого тестовые заготовки проходят окончательную расстройку при tº 35 - 40º и влажности 80 - 85% на протяжении 30 - 55 мин. в специальной камере. Правильное определение оптимальной длительности окончательной расстройки оказывает большое влияние на качество хлебобулочных изделий. Недостаточная длительность расстройки снижает объем изделий, разрыв верхней корки, излишняя - приводит к расплывчатости изделий.

Выпечка. Выпечка тестовых заготовок хлебов массой 500-700г. происходит в пекарной камере хлебопекарной печи при температуре 240-280º в течение 20-24 мин.

Хранение выпеченных изделий и отправка их в торговую сеть. Выпеченные хлебобулочные изделия направляются в хлебохранилище, где укладываются в лотки, которые загружаются в транспорт и перевозятся в торговую сеть.

На хлебобулочные изделия имеются стандарты, по которым определяется их качество. Отклонение от этих стандартов может быть вызвано рядом дефектов и болезней хлеба. Дефекты хлеба могут быть обусловлены качеством муки и отклонениями от оптимальных режимов проведения отдельных технологических процессов производства хлеба, его хранения и транспортировки.

К дефектам хлеба, вызванным качеством муки можно отнести:

Посторонний запах

Хруст на зубах, обусловленный наличием песка в муке.

Горький вкус.

Липкость мякины, если мука смолота из проросшего или морозобойного зерна.

К дефектам хлеба при неправильном проведении технологических процессов относятся:

1.Неправильное приготовление теста.

2.Неправильная разделка теста (растройка).

3.Неправильная выпечка (недостаток или избыток времени выпечки).

Наиболее распространенными болезнями хлеба являются картофельная болезнь и плесневение.

Картофельная болезнь хлеба выражается в том, что мякиш хлеба под действием микроорганизмов, вызывающих эту болезнь, делается тягучим и приобретает неприятный запах. Возбудителями этой болезни являются споровые микроорганизмы, которые имеются в любой муке. Важную роль играют концентрация этих микроорганизмов и температура выпечки хлеба.

Плесневение хлеба вызывается попаданием плесневых грибов и их спор на уже выпеченный хлеб.

2. ТЕХНОЛОГИЯ МЯСА И МЯСОПРОДУКТОВ

Для приемки партии скота по живой массе его рассортировывают по возрастным группам и категориям упитанности в соответствии со стандартами на живой скот. Крупный рогатый скот и молодняк разделяют на три категории: высшую, среднюю и ниже средней. Такая же классификация и у мелкого рогатого скота. Свиньи делятся по категориям: жирные, беконные, мясные и тощие. Птица и кролики делятся на 3 категории: 1, 2 и нестандартную.

Для создания необходимых условий подготовки животных к убою на мясокомбинатах созданы цехи предубойного содержания скота и птицы. Подготовка животных и птицы к убою заключается в освобождении их кишечно-желудочного тракта, чистке и мытья. Для освобождения желудочно-кишечного тракта кормление КРС прекращается за 24 часа, свиней - 12 часов, птицы - 8 часов. Поение животных и птицы не ограничивают.

После предубойной выдержки животные поступают на первоначальную переработку для получения мясной туши. Технологический процесс убоя скота и разделки туш осуществляется в следующей последовательности: оглушение, обескровливание и сбор пищевой крови, отделение головы и конечностей, съем шкуры, извлечение внутренних органов, распиловка туши на две полутуши.

Существует несколько способов оглушения: электрическим током, механическим воздействием, анестизация химическими веществами. Основной способ на мясокомбинатах - электроток.

После оглушения с помощью лебедки или элеватора животные подаются в убойный цех, где первоначально разрезают сонную артерию, зажимом перекрывают пищевод. Затем производится сбор крови (закрытая и открытая системы). После обескровливания с туши снимают шкуру, затем отделяют голову и конечности. Извлечение внутренних органов необходимо делать сразу же после убоя не позднее 30 мин. без повреждения желудочно-кишечного тракта. После извлечения внутренних органов туши распиливают на две половины. Эти полутуши поступают на реализацию или переработку.

Колбасными называют изделия, приготовленные на основе мясного фарша с солью, специями и добавками с тепловой обработкой или без нее. Соленые изделия - это продукты, приготовленные из сырья с неразрушенной или крупноизмельченной структурой.

В зависимости от сырья и способов обработки различают следующие виды колбасных изделий: варенные, полукопченые, копченые, фаршированные, кровяные колбасы и т.д. и т.п.

В течение последующих лет ученые и специалисты разных стран ведут исследования по созданию комбинированных мясопродуктов, сочетающих в себе традиционные потребительские свойства при использовании белка различного происхождения.

Решение задачи создания полноценных комбинированных мясопродуктов необходимо увязывать с развитием нового направления в пищевой технологии - проектированием продуктов питания.

Баночные консервы - это мясопродукты, фасованные в герметичную тару и стерилизованные или пастеризованные нагревом. По видам сырья консервы делят в натуральном соку, с соусами и желе.

По назначению консервы делят на закусочные, первое блюдо, второе блюдо, полуфабрикаты.

По способу подготовки пред употреблением консервы делят на используемые без тепловой обработки, используемые в нагретом состоянии, в охлажденном состоянии.

По длительности срока хранения различают консервы длительного хранения (3-5 лет) и закусочные.

Одной из основных задач технологов мясной промышленности является создание безотходных технологий переработки сырья. Этого можно достигнуть путем совершенствования существующих технологических схем с рациональным использованием запаса сырья, технологического оборудования, транспортных средств.

3. ТЕХНОЛОГИЯ ПЕРЕРАБОТКИ МОЛОКА

Главное условие получения доброкачественных молочных продуктов - соблюдение санитарно-гигиенических правил при дойке и первичной обработке молока, а также условий кормления и содержания животных. Особое внимание необходимо уделять мойке вымени и молочного оборудования. Механическая обработка молока включает очистку от механических примесей и загрязнений биологического происхождения, сепарирование.

Очистка молока от механических примесей может осуществляться с помощью фильтрации под давлением через хлопчатобумажную ткань. Наиболее совершенным способ является использование сепараторов - молокоочистителей, в которых под действием центробежной силы происходит разделение молока и механических примесей. Для механической обработки молока используют кроме центробежных молокоочистителей сепараторы - сливкоотделители, универсальные сепараторы.

Тепловая обработка является важной и обязательной операцией в технологическом процессе производства молочных продуктов. Основная цель нагревания - обезвредить продукт в микробиологическом отношении и в сочетании с охлаждением предохранить от порчи в процессе хранения.

В молочной промышленности широко используются два основных вида тепловой обработки молока нагреванием - пастеризация и стерилизация.

Тепловая обработка молока при температурах ниже точки кипения называется пастеризацией. Цель пастеризации - уничтожение вегетативных форм микроорганизмов в молоке. На практике наиболее распространена кратковременная пастеризация (74-76º С, 20 сек.) молоко проходит через нагретые пластины.

Под стерилизацией понимается тепловая обработка молока при температурах свыше 100º С с целью полного уничтожения вегетативных форм бактерий и их спор. Стерилизованное молоко приобретает привкус кипячения.

На практике применяются следующие режимы стерилизации: I - стерилизация в бутылках при температуре 103-108º С в течение 14-18 мин, II - стерилизация в бутылках и стерилизаторах при температуре 117-120ºС, III - мгновенная стерилизация при температуре 140-142 ºС с разливом в бумажные пакеты.

После пастеризации молоко немедленно охлаждается до различной температуры в зависимости от технологического процесса выработки готового продукта.

Пастеризованное молоко выпускают в мелкой расфасовке, а также в цистернах.

Его вырабатывают по следующей технологической схеме: приемка сырья - качественная оценка - очистка молока (при 35-40ºС), охлаждение пастеризация (74-76ºС) охлаждение (4-6ºС), подготовка тары - укупорка и маркировка - хранение. Срок хранения пастеризованного молока при температуре 8º С не более 20 часов с момента выпуска. Качество пастеризованного молока контролируют по следующим показателям: температура, кислотность, содержание жира, оценка по запаху и вкусу.

Процесс производства пастеризованного молока осуществляется по двум принципиальным схемам: с одно и двухступенчатым режимом стерилизации. При одноступенчатом режиме стерилизации молоко подвергается термической обработке один раз - до или после разлива в бутылки. При этом лучше первый вариант. Технологическая схема: приемка сырья - качественная оценка - очистка - подогрев (75-80ºС) - стерилизация (135-150ºС) - охлаждение (15-20ºС) подготовка тары, разлив - проверка качества.

Более стойкий продукт получается при двухступенчатой стерилизации. При этом способе молоко стерилизуется дважды: до разлива (в потоке) и после разлива (в бутылках).

Топленое молоко - пастеризованное молоко при длительной термической обработке (топление 3-4 час., 95-99ºС).

Молоко с наполнителями: кофе, какао, фруктово-ягодные соки.

Витаминизированное молоко с добавлением витаминов А, Д, С.

Сливки: жирность - 8, 10, 20, 35%

К молочнокислым продуктам относятся: простокваша различных видов, ряженка, кефир, кумыс, йогурт и др. напитки. Общими признаками всех молочнокислых продуктов является брожение, протекающее при сквашивании молока чистыми культурами молочнокислых бактерий.

Различают две группы кисломолочных напитков: полученные только в результате молочнокислого брожения и при смешанном брожении - молочно - кислом и спиртовом.

К 1 группе относятся простокваша, ряженка.

Ко 2 группе - кефир, кумыс.

Существует два способа изготовления кисломолочных напитков: резервуарный и термостойный. Первый способ включает в себя: сквашивание молока в резервуарах - перемешивание - охлаждение в резервуарах - созревание - разлив в бутылки или пакеты. Второй способ состоит из следующих операций: разлив в бутылки - маркировка - охлаждение - созревание в холодильной камере.

Творог получают сквашиванием молока молочнокислыми бактериями с последующим удалением сыворотки. Различают творог из пастеризованного молока, предназначенный для непосредственного употребления в пищу и производства различных творожных продуктов, а также из непастеризованного молока, используемый для производства различных плавленых и других сыров, проходящих термическую обработку.

В зависимости от содержания жира творог делят на жирный (18 % жира), полужирный (9 %) и нежирный. Творог вырабатывается кислотным и сычужно-кислотным способом. По первому способу сгусток в молоке образуется в результате молочнокислого брожения, однако, при таком способе сквашивание жирного молока сгусток плохо отдает сыворотку. Поэтому таким способом получают только обезжиренный творог. Жирный и полужирный творог изготавливают сычужно-кислотным способом…

Сметана вырабатывается путем сквашивания пастеризованных сливок. Вырабатывают сметану жирностью 10 % (диетическая), 20, 25, 30, 36 и 40 % (любительская).

Сквашенные сливки перемешивают, расфасовывают, охлаждают до + 5—8 ° и оставляют на созревание на 24-48 часов.

Мороженое вырабатывают путем замораживания и взбивания молочных или фруктово-ягодных смесей в ассортименте более 50 наименований. Название мороженого зависит от состава, вкусовых и ароматических добавок. Несмотря на значительное разнообразие ассортимента производство мороженого осуществляется по схеме технологического процесса: приемка сырья - подготовка сырья - составление смеси - пастеризация (68° С, 30 минут) - гомогенизация смеси (взбивание) - охлаждение (2-6° С) - фризерование (замораживание) - расфасовка и закаливание (дальнейшее охлаждение) - хранение (18-25° С).

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ВЛАДИВОСТОКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ЭКОНОМИКИ И СЕРВИСА

КОЛЛЕДЖ СЕРВИСА И ДИЗАЙНА

«Оборудование предприятий общественного питания»

для специальностей 260502.51

«Технология продукции общественного питания»,

050501.52 профессиональное обучение специализация

«Технология продукции общественного питания»

Владивосток 2008

Лекция №6. Машины для приготовления теста и кремов

Лекция №7. Весоизмерительное оборудование

Лекция №8. Контрольно-кассовые машины

Лекция №9. Основы теплотехники. Теплогенерирующие устройства

Лекция №10. Варочное оборудование

Лекция №11. Жарочно-пекарное оборудование

Лекция №12. Варочно-жарочное и водогрейное оборудование. Плиты электрические

Лекция №13. Оборудование для раздачи пищи. Мармиты

Лекция №14. Основы холодильной техники. Компрессоры

Лекция №15. Торговое холодильное оборудование. Камеры и шкафы

холодильные

Лекция №16. Охрана труда. Правовые основы охраны труда

Список литературы

Лекция №1. Введение. Классификация оборудования

На современном этапе общественное питание будет занимать преобладающее место по сравнению с питанием в домашних условиях. В связи с этим возникает необходимость дальнейшей механизации и автоматизации производственных процессов, как основного фактора роста производительности труда. Отечественная промышленность создает большое количество различных машин для нужд предприятий общественного питания. Ежегодно осваиваются и внедряются новые, более современные машины и оборудование, обеспечивающие механизацию и автоматизацию трудоемких процессов на производстве.

Создаются и осваиваются новые машины, оборудование, которые будут работать в автоматическом режиме без участия человека.

В настоящее время одной из важнейших задач в стране является радикальная реформа по ускорению научно-технического прогресса в народном хозяйстве.

В общественном питании она стоит особенно остро, на предприятиях до сих пор преобладающее большинство производственных процессов выполняется вручную. Существуют много видов работы, где занято большое количество работников малоквалифицированного труда. Поэтому коренная перестройка в этой сфере производства предполагает необходимость широкой индустриализации производственных процессов, массового внедрения промышленных методов приготовления и поставки продукции потребителям.

Подобная организация производства в общественном питании позволит не только применять новое высокопроизводительное оборудование, но и более эффективно его использовать. В выигрыше будут и потребители, -- сокращаются затраты времени, повышается культура обслуживания, и работники общественного питания -- за счет механизации и автоматизации производства резко снижаются затраты ручного труда, увеличивается производительность производства продукции и улучшаются санитарно-технические условия.

Внедрение новой техники и прогрессивной организации производства дает возможность существенно поднять экономическую эффективность работы предприятий общественного питания за счет повышения производительности труда, сокращения расходов сырья и энергии.

Научно-технический прогресс в общественном питании заключается не только в развитии и совершенствовании используемых орудий труда, в создании новых более эффективных технических средств, но и немыслим без соответствующего совершенствования технологии и организации производства, внедрения новых методов труда и управления.

Совершенствование техники должно обеспечивать не только рост производительности труда и его облегчение, но и снижение затрат труда на единицу продукции при использовании новых машин и механизмов. Иначе говоря, новая техника только в том случае будет эффективной, если затраты общественного труда на ее создание и использование требуют меньше труда, сберегаемого применением этой новой техники. В снижении затрат на единицу продукции, производимую с помощью новой техники, в конечном счете и заключается экономическая суть совершенствования машин и механизмов.

Для ускорения темпов НТП в общественном питании большое значение имеет совершенствование тепловых аппаратов, позволяющих интенсифицировать процессы тепловой обработки сырья за счет применения новых способов нагрева, автоматического поддержания заданных режимов, программирования теплового процесса.

В производстве теплового оборудования в нашей стране в течение последних двадцати лет происходили коренные изменения, которые можно назвать технологической перестройкой. В ней можно выделить три периода. Первый состоял в переходе от использования оборудования, работающего на твердом топливе, к газовому и электрическому оборудованию. На втором произошел переход от универсального оборудования (например, кухонная плита) к секционному, каждый вид которого предназначен для выполнения отдельных операций тепловой обработки продуктов. Третий период происходит в настоящее время. Он заключается в производстве и внедрении оборудования, использующего новые методы тепловой обработки продуктов, сухим паром или методом конвективного обогрева.

Для развития теплового оборудования наиболее перспективным направлением является создание новых аппаратов:

С новыми видами тепловой обработки продуктов (комбинированный нагрев, обработка продуктов сухим паром и конвективным обогревом);

С автоматическим регулированием и программированием теплового процесса;

С непрерывным действием для варки и жарки продуктов (трансферавтоматы);

С устройствами и приспособлениями, механизирующими процессы переворачивания и перемешивания продуктов (пищеварочные котлы с механической мешалкой).

Унификация и стандартизация технологического оборудования позволяют сократить значительно его номенклатуру и снизить материалоемкость и создают также реальные предпосылки для уменьшения трудоемкости выпускаемой продукции.

Для повышения технического уровня предприятий общественного питания, роста производительности труда и улучшения организации обслуживания населения, важное значение имеет совершенствование раздаточного оборудования, внедрение высокопроизводительных конвейерных линий для комплектования и реализации комплексных обедов. Новым направлением улучшения раздаточного оборудования является создание линий прилавков самообслуживания, включающих передвижные мармиты, прилавки, шкафы и другие виды раздаточного оборудования, отвечающего санитарно-техническим и экологическим нормативам.

Совершенствование технологических процессов в общественном питании будет эффективным только в том случае, если, их внедрение осуществляется на новой технической основе. При этом новая техника должна создаваться по трем направлениям. Основным является разработка и освоение техники, отвечающей современному уровню развития науки. Постоянно должна проводиться работа по созданию принципиально новых видов техники. Наряду с этим следует уделять большое внимание и модернизации действующего технологического оборудования.

Важным средством ускорения научно-технического прогресса в общественном питании является своевременная модернизация оборудования, замена морально устаревшей техники на современную, не уступающую по качеству, надежности, металлоемкости и энергоемкости лучшим достижениям науки.

Невысокая эффективность внедрения новой техники зачастую связана с несовершенством конструктивных решений отдельных видов машин. Еще недостаточно высоки качество и надежность используемого оборудования.

Таким образом, перед разработчиком и создателем новой техники ставится задача значительно улучшить вес важнейшие технико-экономические параметры машин, оборудования и различных механизмов в общественном питании:

Создание машин и аппаратов, работающих на основе электрофизических методов тепловой обработки пищевых продуктов (инфракрасные лучи и сверхвысокочастотный нагрев и их использование с традиционными методами);

Разработка средств комплексной механизации и автоматизации производственных процессов для специализированных и узкоспециализированных предприятий общественного питания (блинных, пельменных, пирожковых и т.д.);

Повышение качества выпускаемого оборудования -- надежности, долговечности и ремонтопригодности, и имеющие стандартные унифицированные узлы и детали.

Создание высокопроизводительных универсальных машин и механизмов, удобных для использования их как в индивидуальном виде, а так же в составе механизированных или автоматизированных поточных линий.

Решение этих задач позволит интенсифицировать производственные процессы на предприятиях общественного питания, значительно улучшить качество выпускаемой продукции и снизить ее себестоимость.

Дальнейшее расширение сети предприятий общественного питания и увеличение их технической оснащенности требует от обслуживающего персонала повышения технической грамотности, специальных знаний и повышения квалификации.

Классификация машин

В зависимости от назначения и вида обрабатываемых продуктов, машины предприятий общественного питания можно подразделить на несколько групп.

1. Машины для обработки овощей и картофеля -- очистительные, сортировочные, моечные, резательные, протирочные и т.д.

2. Машины для обработки мяса и рыбы -- мясорубки, фаршемешалки, рыхлители мяса, котлетоформовочные и др.

3. Машины для обработки муки и тоста -- просеиватели, тестомесительные, взбивальные и т.д.

4. Машины для нарезки хлеба и гастрономических продуктов - хлеборезка, колбасорезка, маслоделители и т.д.

5. Универсальные приводы -- с комплектом сменных исполнительных машин.

6. Машины для мытья подовой посуды и приборов.

7. Подъемно-транспортные машины.

Машина состоит из трех основных механизмов: двигательного, передаточного и исполнительного, а также механизмов управления, регулирования, защиты и блокировки.

Двигательными механизмами являются главным образом электродвигатели переменного тока с короткозамкнутым ротором (закрытые, асинхронные, трехфазные или однофазные). Для работы в вагонах-ресторанах и на судах используются электродвигатели постоянного тока.

Передаточный механизм служит для осуществления взаимосвязи двигательного и исполнительного механизмов. В совокупности двигательный и передаточный механизмы называют приводом машин.

Исполнительный механизм определяет назначение и наименование машин. Конструкция его зависит от структуры рабочего цикла и характера технологического процесса, а также вида и физико-механических свойств продукта, подвергаемого обработке: В состав исполнительного механизма входят рабочая камера с загрузочным и разгрузочным устройствами, а также инструменты для механической обработки продуктов.

С помощью механизмов управления осуществляются пуск, останов и контроль за работой машины. Механизмы регулирования предназначены для настройки машины, а механизмы защиты и блокировки -- для предохранения машины от поломки и аварийного ее отключения.

Все машины, применяемые на предприятиях торговли и общественного питания, можно классифицировать по структуре рабочего цикла, степени механизации и автоматизации процессов и по функциональному признаку.

По структуре рабочего цикла различают машины, периодического и непрерывного действия. В машинах и механизмах периодического действия продукт обрабатывается в течение определенного времени, называемого временем обработки, а затем удаляется из рабочей камеры. После загрузки новой порции продукта процесс повторяется. В машинах непрерывного действия процессы загрузки, обработки и выгрузки продукта происходят одновременно и непрерывно.

По степени механизации и автоматизации различают машины неавтоматические, полуавтоматические и автоматические. В машинах неавтоматического действия загрузка, выгрузка, контроль и вспомогательные технологические операции выполняются оператором. В машинах полуавтоматического действия основные технологические операции выполняются машиной; ручными остаются только транспортные, контрольные и некоторые вспомогательные процессы. В машинах автоматического действия все технологические и вспомогательные процессы выполняются машиной.

По функциональному признаку машины и механизмы предприятий торговли и общественного питания подразделяются на ряд групп, обусловленных их назначением: машины для разделения сыпучих пищевых продуктов; машины для мытья овощей и столовой посуды; машины для очистки продуктов от наружных покровов; машины для измельчения продуктов; машины для перемешивания продуктов; машины, обрабатывающие продукты давлением; весоизмерительные устройства и контрольно-кассовые машины; подъемно-транспортное оборудование.

Лекция №2. Общие сведения о машинах и механизмах

Машина -- это совокупность механизмов, выполняющих определенную работу или преобразующих один вид энергии в другой. В зависимости от назначения различают машины -- двигатели и рабочие машины.

В зависимости от назначения рабочие машины могут выполнять определенную работу по изменению формы, размеров, свойств и состояния объектов труда. Объектами труда в предприятиях общественного питания служат пищевые продукты, подвергающиеся различной технологической обработке -- очистке, измельчению, взбиванию, перемешиванию, формированию и т.д.

По степени автоматизации и механизации выполняемых технологических процессов различают машины неавтоматические, полуавтоматические, автоматические. В машинах неавтоматического действия загрузка, выгрузка, контроль и вспомогательные технологические операции выполняются поваром, закрепленным за данной машиной. В машинах полуавтоматического действия основные технологические операции выполняются машиной, ручные остаются только транспортные, контрольные и некоторые вспомогательные процессы. В машинах автоматического действия вес технологические и вспомогательные процессы выполняются машиной. Они используются в составе поточных и поточно-механизированных линий и полностью заменяют труд человека.

Основные требования предъявляемые к машинам и механизмам.

Машины и механизмы должны удовлетворять требованиям прогрессивной технологии обработки сырья и продуктов.

Для этого необходимо, чтобы конструктивные, кинематические и гидравлические параметры оборудования обеспечивали оптимальные режимы технологических процессов и высокие технико-экономические показатели. Такими параметрами являются: удельная энергоемкость, удельная металлоемкость, удельная материалоемкость, удельный расход воды, занимаемая оборудованием площадь и др., т. е. параметры машины, отнесенные к единице производительности.

Конструкция должна обеспечивать высокую надежность и долговечность машины, быструю замену изношенных и неисправных рабочих органов, инструментов, узлов и деталей. Конструкция должна быть технологичной, т. е. в процессе изготовления и эксплуатации машины затрачиваются минимальные средства. Необходимо, чтобы машины и механизмы отвечали требованиям техники безопасности Й производственной санитарии (машины заземляют; рабочие органы, инструменты и элементы передачи закрывают кожухами, крышками, предохранительными кольцами, облицовками или заключают в корпуса; в конструкцию многих машин включают различные блокировочные устройства и элементы, обеспечивающие отключение их при поднятых ограждениях).

Выпускаемые машины все в большей степени должны отвечать требованиям производственной эстетики. Правильные пропорции машин, простота их формы, удобное расположение элементов управления, загрузочных и разгрузочных устройств, приятная окраска способствуют повышению производительности труда и созданию безопасных условий работы.

При создании современных машин и механизмов стремятся к стандартизации и унификации узлов, деталей и комплектующих изделий, что позволяет сократить номенклатуру запасных частей и облегчить выполнение ремонтных работ.

Рабочие органы и инструменты машин и механизмов должны обладать высокой износоустойчивостью. Быстровращающиеся узлы и детали машин должны быть уравновешены, чтобы исключить износ подшипников, валов и корпусных деталей.

Материалы, применяемые при изготовлении машин и механизмов.

Детали, входящие в состав машин, испытывают различные нагрузки, что учитывается при выборе материалов. На детали корпусов (станины, стойки и др.) приходится до 75% массы всех деталей машины, и хотя они испытывают незначительные нагрузки, детали должны отвечать требованиям прочности и жесткости. Детали корпусов выполняют литыми из серого чугуна или алюминия и сварными из углеродистой стали марок СтЗ и Ст5. Использование сварных конструкций крышек и кожухов дает большую экономию металлов. Для уменьшения массы переносных машин и механизмов детали их корпусов изготовляют из сплавов алюминия методом литья или литья под давлением. В отдельных случаях детали корпусов могут быть изготовлены из армированных пластмасс или стеклопластиков.

Валы, шестерни, тяги, оси, пальцы испытывают наибольшие нагрузки. Материалами для их изготовления служат углеродистые и нержавеющие стали. Чаще всего применяют стали марок 45, 50, 40Х, 65Г, 15, 20Х и др.

Шестерни, шкивы, зубчатые колеса, маховики изготовляют из чугуна, стали, сплавов алюминия, а также из пластмасс, текстолита, пластиков, капрона и др.

Ножи и решетки мясорубок изготовляют из инструментальной стали, а также высокохромистого чугуна марки Х28. Материалы, которые используют для производства инструментов и рабочих камер, не должны подвергаться коррозии в результате соприкосновения с продуктами, кроме того, они должны легко очищаться от остатков продукта и не разрушаться под влиянием моющих средств.

Выбор марки и способа термообработки материала определяется расчетом его на прочность или жесткость с учетом технологических, эксплуатационных и экономических требований.

Маркировка машин и механизмов.

В настоящее время маркировку машин и механизмов производят по отраслевой инструкции, которая устанавливает единый порядок обозначений, обязательный для всех организаций и предприятий торговли и общественного питания.

В основу обозначений положена смешанная буквенно-цифровая система.

Левая часть обозначения -- буквенная -- состоит из трех-четырех букв. Первая буква соответствует наименованию изделия (П --привод, М --машина и др.), вторая --назначению изделия (У -- универсальный, О -- очистительный, К -- комбинированный, В -- взбивальный, Т -- тестомесильный, М --моечный, И -- измельчительный), третья буква соответствует наименованию вида энергии или основному технологическому процессу (Э -- электрический, О -- овощной, М -- мясной, В -- вибрационный) и т. д.

Правая часть обозначения -- цифровая--: служит показателем основного параметра изделия (производительность, вместимость рабочей камеры и др.) и отделяется от левой части при помощи дефиса. Основные параметры изделий указывают по верхнему (максимальному) пределу. Если машина выпускается в модернизированном варианте, после основного ее параметра проставляется шифр, обозначающий модернизацию (М, Ml, М2 и т. д.).

Примеры маркировки машин: МОК-250 --машина для очистки картофеля и корнеклубнеплодов производительностью 250 кг/ч; ММУ-1000-- машина моечная универсальная производительностью 1000 тарелок/ч; МИМ-500 -- машина для измельчения мяса производительностью 500 кг/ч.

Лекция №3. Детали машин. Электроприводы

Основные части и детали машин

Современные машины состоят из большого числа деталей различного назначения. Соединяясь между собой, детали образуют узлы. Основными узлами любой машины, используемой в предприятиях общественного питания, являются: станина, корпус, рабочая камера, рабочие органы, передаточный механизм и двигатель.

Станина -- служит для установки и монтажа всех узлов машины. Изготавливается она обычно литой или сварной и имеет отверстия для закрепления машины на рабочем месте. Корпус машины -- предназначен для размещения внутренних частей машины -- рабочей камеры, передаточного механизма и т.д. Иногда станина и корпус изготавливаются как одно целое.

Рабочая камера -- место в машине, где продукт обрабатывается рабочими органами.

Рабочие органы -- это узлы и детали машин, непосредственно воздействующие на продукты питания в процессе их обработки.

Передаточный механизм -- передает движение от вала двигателя к рабочему органу машины, одновременно обеспечивая требуемые скорость и направление движения. Как правило в качестве двигателя машины используется электродвигатель

Понятие о передачах

Передачей называется механическое устройство, передающее вращательное движение от вала электродвигателя к валу рабочих органов. Одновременно передачи позволяют изменять скорость вращения вала, направление движения на противоположное и преобразовывать один вид движения в другой.

В механических передачах вал с закупленными на нем деталями, передающими вращение, называется ведущим, а вал с деталями вращения - ведомым.

Все механические передачи можно разделить на ременные, зубчатые, червячные, цепные и фрикционные.

Зубчатые передачи это механизм, состоящий из 2-х зубчатых колес, сцепленных между собой. Эти передачи получили широкое применение в передаточных механизмах машин.

В зависимости от конструкции и расположения зубчатых колес, зубчатые передачи подразделяются на цилиндрические, конические и планетарные. По способу зацепления зубьев, зубчатые передачи делятся на передачи с внешним и внутренним зацеплением.

В зависимости от расположения зубьев, колеса подразделяются на плоскозубые, косозубые и шевронные. Для передачи сложного вращательного движения используется планетарный зубчатый механизм (рис. 1-2пап), при котором одно зубчатое колесо неподвижно, другое совершает двойное вращение: вокруг своей оси и вокруг оси неподвижного колеса (взбивальная машина).

Ременная передача -- осуществляется при помощи двух шкивов, закрепленных на ведущем и ведомом валах, и надетого на эти шкивы ремня. Вращение от одного вала к другому передается посредством трения, возникшего между шкивом и ремнем.

Ремень в поперечном сечении может иметь форму прямоугольника -- плоско ременная передача, трапеции -- клиноременная передача, круга -- круглоременная передача. Ремни выполняются из кожи или хлопчатобумажной и прорезиненной ткани. Нормальная работа зависит от правильного натяжения ремня. Ременная передача бесшумна в работе, проста по конструкции и предохраняет машину от поломки в случае заклинивания, так как ремень будет пробуксовывать. На предприятиях общественного питания широкое применение получила клиноременная передача, применяемая в картофелечистках, мясорубках, холодильных агрегатах и т.д.

Червячная передача применяется для передачи движения между валами с пересекающимися осями. Состоит она из винта со специальной резьбой (червяк) и зубчатого колеса с зубьями соответствующей формы. Эти передачи компактны, бесшумны и значительно снижают скорость вращения вала.

Цепная передачи состоит из 2-х закрепляемых на валах звездочек и шарнирной гибкой цепи, которая надевается на звездочки и служит для их связи. Эти передачи применяются в механизмах и машинах при больших расстояниях между валами и параллельном расположении их осей. Цепные передачи обеспечивают постоянное передаточное отношение и по сравнению с ременной передачей позволяют передавать большие мощности, кроме того, одной цепью можно приводить в движение нескольких валов. К недостаткам цепной передачи можно отнести высокую стоимость обслуживания, сложность изготовления и шума в процессе работы.

Фрикционная передача состоит из 2-х катков, насаженных на валы и прижатых один к другому. Вращение от ведущего катка перелается ведомому за счет силы трения.

При передаче вращения между параллельными валами применяются цилиндрические передачи, между пересекающимися валами -- конические.

Эти передачи просты по конструкции, бесшумны в работе и самопредохраняются от перегрузок, однако имеют некоторые недостатки: низкий КПД - 80-90%, непостоянное передаточное число и повышенный износ катков.

Кривошипно-шатунный механизм предназначен для преобразования вращательного движения в возвратно-поступательное движение рабочего инструмента. Он состоит из коленчатого вала, шатуна и поршня. При вращении коленчатого вала, шатун вставляет поршень перемещаться возвратно-поступательно. Этот механизм применяется в компрессорах холодильного оборудования.

Понятие об электроприводах

Электроприводом называется машинное устройство, используемое для приведения в движение машины. Он состоит из электрического двигателя, передаточного механизма и пульта управления. На предприятиях общественного питания наибольшее распространение имеют двигатели, рассчитанные на напряжение 380/220 В. Это значит, что один и тот же двигатель может работать от сети переменного тока с частотой 50 Гц и с напряжением 380 или 220 В, следует только правильно соединить обмотки его статора. Соединяя их "треугольником", двигатель подключают к сети напряжением 220 В, соединяя звездой, к сети напряжением 380 В.

Широкое применение получили универсальные приводы, которые могут поочередно приводить в движение различные устанавливаемые сменные рабочие механизмы -- фаршемешалка, мясорубка, взбивали и т.д. Применение универсальных приводов в стоповых очень выгодно. Объясняется это тем, что сменные рабочие машины работают в столовых не более часа и поэтому имеют очень малый коэффициент использования. В таких случаях устанавливать электропривод к каждой машине нецелесообразно из-за увеличения ее стоимости и занимаемой плошали. В настоящее время промышленность выпускает универсальные приводы 2-х видов: общего назначения, которые используются в нескольких цехах, и специального назначения, которые используются только в одном цехе, например, в мясном. К универсальным привалам общего назначения относятся и универсальные малогабаритные приводы УММ-ПР с электродвигателем переменного тока, УММ-ПС с электродвигателем постоянного тока, которые используют на транспорте (судах и вагонах-ресторанах). Все универсальные приводы имеют буквенные обозначения. Первая буква П обозначает привод, вторая - название цеха: М -- мясной, X -- холодный, Г -- горячий, У -- универсальный, для холодного цеха ПХ-0,6, для горячего цеха ПГ-0,6 и для мясного цеха ПМ-1,1. На приводы общего назначения: ПУ-0,6 и П-11 устанавливаются сменные механизмы, которые имеют буквенные обозначения: первая буква М -- механизм сменный, вторая М -- мясорубка, В -- механизм взбивальный, О -- механизм овощерезательный.

Универсальные приводы

На предприятиях обществе иного питания наряду с машинами предназначенными для выполнения одной какой-либо операции применяются универсальные приводы с набором сменных механизмов, выполняющих целый ряд операций по обработке продуктов.

Универсальные приводы используют преимущественно в небольших предприятиях общественного питания, в мясных, овощных и кондитерских цехах.

Универсальным приводом называется устройство состоящее из электродвигателя с редуктором и имеющее приспособление для переменного подсоединения различных сменных механизмов. Он состоит из электродвигателя с редуктором, на котором могут закрепляться и попеременно работать различные по назначению съемные механизмы: мясорубка, взбивалка, овощерезка, мясорыхлитель и другие машины. Отсюда привод получил свое название - "универсальный".

Применение универсальных приводов значительно увеличивает производительность труда, снижает капитальные затраты, увеличивает коэффициент полезного действия оборудования и т.д.

В настоящее время промышленность выпускает универсальные приводы П-11 и ПУ-0.6 для различных цехов, а также приводы специального назначения П-1,1 для сравнительно небольшого ассортимента продукта.

Для работы в небольших столовых, а также в камбузах речных и морских судов используются универсальные малогабаритные привады УММ-ПС иди УММ-ПР. Источником энергии этих приводов макет быть переменный (ПР) или постоянный (ПС) ток.

Универсальный привод общего назначения ПУ-0,6 выпускается двухскоростным с частотой вращения вала 170 и 1400 об/мин и односкоростным с частотой вращения 170 об/мин и мощностью двигателя 0,6 кВт. Он имеет комплект сменных механизмов (табл. 1), которые могут использоваться на небольших предприятиях, где отсутствует цеховое.деление приготовления продушин.

На больших предприятиях общественного питания, где имеется цеховое деление, используют специализированные универсальные приводы:

Привод ПМ-1.1 специализированный для мясо-рыбного цеха выпускается в односкоростном или двухскоростном варианте, с частотой вращения вала 170 или 1400 об/мин и мощностью двигателя 1,1 кВт. Он имеет комплект сменных исполнительных механизмов, которые могут быть использованы только в мясо-рыбных цехах предприятий.

Привод ПХ-0,6 специализированный для холодных цехов. Состоит из односкоростного привода П-0,6 и комплекта сменных исполнительных механизмов, которые могут быть использованы в холодных цехах.

Привод ПГ-0,6 специализированный для горячих цехов, состоит из полноскоростного привода П-0,6 и комплекта сменных исполнительных механизмов, которые могут быть использованы в горячих цехах.

Привод П-П универсальный состоит из двухступенчатого зубчатого редуктора, двухскоростного двигателя. Частота вращения приводного вала привода составляет ПО и 330 об/мин. На горловине привода расположена рукоятка с кулачком для крепления сменных исполнительных механизмов. Переключатель скоростей электродвигателя, пусковая кнопка и кнопка возврата гешевого реле смонтированы на пульте управления.

Все выпускаемые приводы и сменные механизмы к ним имеют буквенные и цифровые обозначения.

Буква П - обозначает слово привод, У - универсальный, М - мясной цех, X - холодный цех, Г -- горячий цех. Цифры, следующие за буквенными обозначениями, указывают на номинальную мощность электродвигателя привода в киловаттах.

Сменные механизмы (МО. комплектуемые к универсальному или специализированным приводам, имеют определенный порядковый номер.

Номер 2 -- мясорубка, 3 -- соковыжималка, 4 -- взбивалка, 5 -- картофелечистка, 6 - мороженница, 7 - протирочный механизм, 8 - фаршемешалка, 9 -- куттер, 10 -- овощерезка, 11 -- тележка или подставка для привода, 12 - размолочный механизм, 13 -- приспособление для чистки ножей и вилок, 14 -- колбасорезка, 15 - косторезка, 16 -- точило, 17 -- рыбоочиститель, IS -- механизм для фигурной нарезки овощей, 19 -- рыхлитель мяса, 20 - механизм для взбивания, 21 - котлетоформовочный механизм, 22 - механизм для нарезки вареных овощей, 24 - просеиватель, 25 -- механизм для перемешивания салатов и винегретов, 27 - механизм для нарезки свежих овощей, 28 -- механизм для нарезки сырых овощей брусочками.

Цифра, следующая за порядковым номером механизма показывает величину средней производительности. Кроме того, некоторые сменные механизмы обозначаются двумя или более цифрами. Например, МС-4-7-8-20. Это обозначение свидетельствует о многоцелевом назначении механизма: 4 -- взбивать продую-, 7 -- протирать продукт, 8 - перемешивать фарш, 20 -- емкость бачка.

Правила эксплуатации и техники безопасности универсальных приводов

Подготовку к работе универсального привода проводит повар, закрепленный за данной машиной, который перед началом работы обязан выполнить требования техники безопасности и соблюдать при работе с машиной безопасность труда.

Вот поэтому перед началом работы проверяется правильность установки универсального привода, исправность сменного механизма и правильность его сборки и крепления с помощью винтов-зажимов. При установке корпуса сменного механизма в горловине привода контролируют» чтобы конец рабочего вала механизма попал в гнездо привода вала редуктора универсального привода. Проверяется наличие ограждающих устройств, заземления или зануления.

Убедившись в исправности сменного механизма и привода, производят пробный пуск па холостом ходу. Привод должен работать с небольшим шумом. В случае неисправности привод останавливают и устраняют причину неисправности. Регулировать скорость вращения в процессе работы разрешается только при наличие вариатора в конструкции машин.

Приготовленные продукты загружать в сменные механизмы нужно только после включения универсального привода, исключение составляет только взбивальный механизм, у которого сначала загружают в бачок продукты, а затем включают универсальный привод.

При работе запрещается перегружать сменный механизм продуктами, так как это приводит к ухудшению качества или порче продуктов, а так же к поломке машины. Особое внимание нужно уделить строгому соблюдению правил безопасности при работе с универсальным приводом, т.к. неосторожность приводит к травмам обслуживающего персонала.

Осмотр универсального привода и установленного сменного механизма, а так же устранение неполадок разрешается проводить только после выключения электродвигателя универсального привода и его полной остановки.

После окончания работы универсальный привод выключают и отключают от электросети. Только потом можно снимать сменный механизм для разборки, промывки и сушки.

Профилактический и текущий ремонт универсального привода и сменных механизмов проводят специальные работники согласно заключенного договора.

Лекция №4. Машины для обработки овощей

Общие сведения.

На предприятиях существует несколько способов очистки овощей от кожуры: щелочной, паровой, комбинированный, термический и механический. При щелочном способе картофель и другие овощи предварительно нагревают в воде, а затем обрабатывают щелочным раствором, нагретым до 100 0С, который размягчает поверхностный слой клубней. Затем в барабанной моечной машине клубни очищаются от наружного слоя и отмываются от щелочи. При паровом способе картофель обрабатывают паром под давлением 0,6 0,7 МПа в течение 1-2 мин, затем поступает в роликовую моечно-очистительную машину, где размягченный слой с клубней снимается. При комбинированном способе картофель вначале обрабатывается 10% раствором каустической соды при температуре 75-80 0С в течение 5-6 минут, затем паром в течение 1-2 минут. После этого картофель поступает в моечные машины обычно барабанного типа.

При термическом способе овощи обжигают в цилиндрической печи с вращающимся цилиндрическим ротором и достигают глубину провара не более 1,5 мм. Затем овощи очищаются в моечно-очистительной машине. Продолжительность термической обработки для лука 3-4 сек, для моркови 5-7 сек, для картофеля 10-12 сек. Еще один способ очистки - механический.

Оборудование для измельчения и нарезки овощей.

Овощерезательные машины бывают: дисковые, роторные, пуансонные и комбинированные.

Машина настольного типа МРО-200 используется для нарезки сырых овощей кружочками, ломтиками, соломкой, брусочками. Привод машины состоит из электродвигателя и клиноременной передачи. Рабочая камера выполнена в виде цилиндра с окнами для загрузки овощей. В комплект машины входит дисковый нож, два терочных диска и два комбинированных ножа. Дисковый нож используется для нарезки овощей ломтиками и шинкования капусты, комбинированные - овощей брусочками сечением 3 х 3 и 10 х 10 мм.

Классификация.

Машины для измельчения сырья условно можно разделить на две группы: машины, обеспечивающие грубое измельчение сырья и машины, обеспечивающие тонкое измельчение. Современные машины для грубого измельчения бывают: валковые, ножевые, молотковые, дробилки - гребнеотделители для винограда, дробилки - семяотделители для томатов. Машины для резки сырья существуют с неподвижными ножами, с вращающимися дисковыми ножами; комбинированные машины для резки овощей брусочками. Для тонкого измельчения сырья и отделения семян применяются протирочные машины, а также гомогенизаторы, коллоидные мельницы, дезинтеграторы, микронор, куттер и др.

Овощерезка

Имеет два горизонтальных вала, вращающихся в противоположных направлениях . Вал 1 вращает барабан, во внутреннюю полость которого поступает сырье. Вал 2 приводит во вращение дисковые ножи, число оборотов которых в пять раз больше числа оборотов барабана. Сырье, поступившее в барабан, под действием центробежной силы отбрасывается лопастью к неподвижному цилиндрическому корпусу и подводится под воздействие дисковых ножей и неподвижного плоского ножа. Форма лопасти обеспечивает заклинивание продукта во время резки. Поэтому сырье разрезается в двух плоскостях на брусочки и по желобу выводится из машины. В той же корнерезке после модернизации основным усовершенствованием является применение устройства, которое сообщает плоскому ножу колебательное движение в плоскости, перпендикулярной режущей кромке, улучшающее качество резки.

Производительность машины может быть определена по формуле:

где n - число оборотов барабана в минуту; D - диаметр кожуха, в котором находится барабан, в м; h - высота среза продукта горизонтальным ножом; ? - ширина лопасти барабана, м; р - объемная масса продукта, кг/м3; ? - коэффициент использования режущего инструмента (? = 0,3 ?= 0,4).

Машина для резки баклажанов и кабачков кружками отрезает концы плодов вместе с плодоножкой и соцветием и разрезает их на кружки набором дисковых ножей; толщина кружков определяется дистанционными шайбами , .

Протирочные машины

Протирание - это не только процесс измельчения, но и разделения, т.е. отделения массы плодоовощного сырья от косточек, семян и кожуры на ситах с диаметром ячеек 0,8-5,0 мм. Финиширование - это дополнительное измельчение протертой массы пропусканием через сито диаметром отверстий 0,4-0,6 мм.

Основные конструкции протирочных машин различаются по взаимодействию сита и бичевых устройств. В основу положены следующие признаки: сетчатый барабан неподвижен, движутся бичи, «инверсивные» протирочные машины, в которых движется сито, а бичи неподвижные, и безбичевые. В них сито совершает сложное вращательное движение вокруг собственной оси и планетарно. По количеству ступеней: одноступенчатые, двухступенчатые, трехступенчатые, две сдвоенные машины. По конструкции сита: коническое и цилиндрическое; секционные и по диаметрам отверстий. По конструкции бичевых устройств: плоские; проволочные и др. По загрузочным устройствам: шнековые, в сочетании с лопастным устройством, загрузки по трубе.

Одноступенчатая протирочная машина состоит из станины, приводного вала, укрепленного в 2-х подшипниках со шнеком, лопастью и бичевым устройством, загрузочного бункера и привода с клиноременной передачей.

Работа машины основана на силовом воздействии бичей на обрабатываемый продукт, продавливая его через сито и за счет центробежной силы. Рабочая машина также регулируется изменением угла между осью вала и бичами, изменением зазора между ситом и бичами и диаметром отверстий сит. Протертая масса выводится через поддоны, а отходы из цилиндра выводятся через лоток.

Лекция №5. Машины для обработки мяса и рыбы

Классификация

Для обработки мяса и рыбы применяются машины: мясорубки, мясорыхлители, фаршемешалки, рыбоочистительные и рыборазделочные машины, котлетоформовочные, набивочные и разливочные машины, для нарезки гастрономических товаров, костерезки.

Машины для обработки мяса.

Мясорубки

Мясорубки и волчки предназначены для грубого измельчения сырья.

На предприятиях широкое распространение получили мясорубки МИМ-82 производительностью 250 кг/ч и МИМ-105 производительностью 400 кг/ч , .

Мясорубка МИМ-82 является настольной машиной, состоящей из корпуса, камеры обработки, загрузочного устройства, шнека, рабочих органов, приводного механизма. Рабочая камера машины на внутренней поверхности имеет винтовые нарезы, которые улучшают подачу мяса и исключают вращение его вместе со шнеком. На верхний части корпуса находится загрузочное устройство с предохранительным кольцом, исключающее возможность доступа рук к шнеку, и толкатель.

Мясорубка комплектуется тремя решетками с отверстиями 3, 5, 9 мм, подрезной решеткой и двумя двухсторонними ножами.

В собранном виде ножи и решетки плотно прижаты друг к другу с помощью упорного кольца и нажимной гайки.

Внутри рабочей камеры находится шнек с переменным шагом витков, который уменьшается в сторону режущего механизма. Благодаря такой конструкции однозаходного червяка-рабочего шнека - продукт уплотняется, что облегчает его резку ножами и продавливание сквозь решетки. В собранном виде ножи и решетки плотно прижаты друг к другу с помощью упорного кольца и нажимной гайки. Шнек служит для захватывания мяса и подачи его к ножам и решеткам. Установленные решетки остаются в рабочей камере неподвижными, а ножи вращаются вместе со шнеком.

Первой устанавливается подрезная решетка, которая имеет три перемычки с заостренными кромками наружу. Вторым устанавливается двухсторонний нож, режущими кромками против часовой стрелки. Третьей устанавливается крупная решетка любой стороной. Далее устанавливают второй двухсторонний нож, мелкую решетку, упорное кольцо и нажимную гайку. Диаметр решеток мясорубок 82; 105; 120; 160; 200 мм. Рабочие органы: ножи и решетки МИМ-105 аналогичны рабочим органам МИМ-82, только диаметр рабочей камеры (диаметр решетки) на 23 мм больше.

В волчке 632-М производительностью 400 кг/ч камерой обработки служит цилиндрическая полость корпуса с направляющими ребрами и бороздками, улучшающими подачу продукта. Кроме того, они препятствуют прокручиванию продукта вместе с рабочим шнеком.

Принцип действия мясорубок (волчков) одинаковый. Продукт, попадая в зону резания, т.е. между вращающимися крестовидными ножами и неподвижными решетками измельчается до степени, соответствующей диаметру отверстий последней решетки.

Волчок МП-160 производительностью 3000 кг/ч диаметром режущего механизма 160 мм отличается от 632-М наличием в камере обработки двух параллельных шнеков: приемного и рабочего.

Волчок К6-ФВЗП-200 имеет производительность 4500 кг/ч и диаметр режущего механизма 200 мм.

Фаршемешалки и машины для рыхления мяса

К машинам и механизмам мясного цеха относятся: мясорыхлитель МРМ-15 производительностью 1800 шт/ч, механизмы для рыхления мяса МРП11-1 (1500 шт/ч) и МС19-140 (1400 шт/ч); механизм для рыхления мяса для бефстроганов МБП11-1 (100 шт/ч); фаршемешалка МС8-150 и МВП11-1 (150 кг/ч); размолочный механизм МС 12-15 и механизм для измельчения хрупких продуктов МИП 11-1 (15 кг/ч); рыбоочистительная машина РО-1М и костерезка.

Фаршемешалки предназначены для перемешивания фарша и его компонентов в однородную массу и насыщения ее воздухом.

Фаршемешалка МС-150 состоит из алюминиевого цилиндрического корпуса, отлитого заодно с загрузочным бункером. Внутрь рабочей камеры вставляется вал, на котором находятся лопасти, установленные по углом 3000. При вращении рабочего вала лопасти равномерно перемешивают фарш с компонентами.

В фаршесмесителе ФММ-300 месильное корыто емкостью 300 л имеет тепловую рубашку для подогрева продукта при его перемешивании. Внутри корыта расположены рабочие органы в виде двух Z-образных винтовых лопастей, которые вращаются с различными скоростями (67 и 57 об/мин) навстречу друг другу.

В фаршесмесителе с отъемной дежой в процессе работы дежа непрерывно вращается вокруг оси нижнего червячного колеса, а кулачковая мешалка также вращается и обеспечивает равномерное перемешивание продукта.

Двухлопастные фаршесмесители с опрокидывающейся дежой емкостью 340 и 650 л состоят из двух месильных лопастей, вращающихся навстречу одна другой с различными скоростями (47,6 и 37,4 об/мин) и двух приводов, первый из которых приводит в движение месильные лопасти, а второй - опрокидывает дежу.

Мясорыхлительная машина МРМ-15 предназначена для рыхления поверхности ромштексов, шницелей и т.д. перед их обжаркой . Рабочими органами мясорыхлителя служат дисковые ножи-фрезы с дистанционными шайбами между ними, расположенные на валах и вращающиеся при работе один навстречу другому.

В каретке установлены также две гребенки между фрезами, которые предохраняют от наматывания мяса на фрезы. Кусок мяса, проходя между фрезами, надрезается с двух сторон зубьями, при этом происходит разрушение волокон и увеличение поверхности.

Машины для обработки рыбы.

Рыбоочистительные и рыборазделочные машины

Машина РО-1М , предназначена для очистки рыбы от чешуи. Рабочий инструмент рыбоочистительной машины, скребок, изготовлен из ножевой нержавеющей стали в виде фрезы с продольными бороздками, заостренными с одной стороны.

Для защиты от случайного прикосновения рук и разбрасывания чешуи вращающийся скребок имеет защитный кожух. Скребок приводится в движение посредством гибкого вала, состоящего из резинового шланга, внутри которого находится стальной трос.

Существует оборудование для сортирования рыбы, для ориентации и загрузки рыб и рыборазделочные машины.

Если для сортирования рыбы используют сита, то это процесс механический. Сито является рабочим органом машины и представляет собой плоскость, выполненную из проволок, нитей, пластин, а также подвижных и неподвижных стержней.

Технические способы частичной ориентации рыбы различны. Наибольшее распространение получили наклонная, и особенно широко распространенная колеблющаяся плоскость.

Частичное ориентирование рыбы, когда все они после ориентации располагаются головой вперед, достаточно для загрузки в нанизочные машины, например, в линии «Шпроты в масле». Для загрузки и работы рыборазделочных машин нужна полная ориентация рыб. Например, все рыбы, расположенные головой вперед, должны лежать на спине или, наоборот, спиной вверх и, наконец, упираться рылом в какую-то планку.

При разработке конструкций рыборазделочных машин необходимо в будущем:

1) Сократить номенклатуру названий за счет универсальности.

2) Повысить производительность за счет механизации загрузки рыбы в кассеты рыборазделочных машин.

Для этого необходима универсальная машина для разделки средних рыб.

Универсальная маш...........

Страницы: | | | |

Конспект лекций

По курсу «Общая технология пищевых производств и отрасли» по направлению 6.090220 «Инженерная механика»

Тема 1. Общие сведения о питании, пищевой ценности продуктов питания, о составе и свойствах пищевого сырья.

1.1 Предмет и содержание курса «Общая технология пищевых производств и отрасли».

Приводится классификация предприятия агропромышленного комплекса Украины по первичной переработке растительного и животного сырья и рыбы (первая группа предприятий) и производство на его основе разнообразной пищевой продукции (вторая группа предприятий). Даётся перечень вопросов, которые включены в программу курса: общие сведения о пищевых продуктах, характеристика сырья растительного и животного происхождения, микробиология консервирования пищевых продуктов, принципы консервирования сырья и продуктов от порчи. Кроме того будут рассматриваться технология консервирования всех видов перечисленного сырья холодом, включая способы охлаждения, использования модифицированной газовой атмосферы (МТА), способы замораживания. Применительно к обработке рыбного сырья будут изучаться способы посола, сушки, копчения производство консервов и кормовой рыбной муки.

В разделе «Технология консервирования сырья» будут рассмотрены способы подготовки полуфабрикатов к консервированию для всех видов сырья: растительного, животного происхождения и рыбы.

1.2 Химический состав сырья растительного, животного происхождения, рыбы.

Растительное сырье.

Оно различается большим разнообразием. Так колебание в содержании влаги в сырье от 14 до 90 и более процентов и в связи с этим принято делить его на отдельные группы: зерномучные, овощи, фрукты, ягоды. Овощи в свою очередь подразделяются на вегетативные формы, клубнекорневые растения, стебельные, плодовые, а фрукты – на семечковые и косточковые.

Основной составной частью сухих веществ растительного сырья являются углеводы, их количество достигает в большинстве случаев 70-75%, с резким колебанием в нативном состоянии от 2% (огурцы)до 65% (семена бобовых) и 70-80% (злаков).

Кроме того, в состав тканей растительного сырья входят ароматобразующие вещества, органические кислоты, минеральные элементы, пигменты, витамины, что и определяет их пищевую ценность.

Химический состав молока, %: влага – 85-88, липиды 3-5, белок – 3-4, лактон -5, минеральные вещества -0,7, витамины группы В, а также А, Д, Е. Белок молока характеризуется высокой пищевой ценностью, конкурирует с мясным протеином.

Химический состав мяса теплокровных животных, %:

Говядина: влага – 70-75, липиды – 4-8, белок – 20-22, минеральные вещества – 1-1,5.

Птица: влага – 65-70, липиды – 9-11, белок – 20-23, минеральные вещества – 1-1,5.

Свинина: влага – 70-75, липиды – 4-7, белок – 19-20, минеральные вещества – 1-1,5.

Баранина: влага – 72-74, липиды – 5-6, белок – 20, минеральные вещества – 1-1,5.

Белки имеют в своем составе полный набор незаменимых аминокислот и потому полноценны в пищевом отношении. Белки мышечной ткани делятся на водорастворимые, контрактильные и нерастворимые, в состав последних входят коллаген и эластин. В мышцах животных содержатся водорастворимые витамины.

Куриные яйца. Соотношение желтка к белку равно как 1:3. В белке яйца содержится, %: влага – 87-89, липиды – 0,03, белок – 9-10, минеральные вещества – 0,5. В желтке соответственно содержится: 48;32;15;1,1. Белки яйца признаны более полноценными в пищевом отношении даже в сравнении с белками мышц животных.

Химический состав тканей рыб, %: влага – 56-90, липиды – 2-35, белок – 10-26, минеральные вещества – 1-1,5. По содержанию жира и белка подразделяются соответственно на 4 группы. В состав белков мышц больше содержится небелковых азотистых веществ, чем в белках теплокровных животных, жиры более ненасыщенные и потому при комнатной температуре находятся в жидком состоянии, у теплокровных животных – в твердом состоянии.

 

Возможно, будет полезно почитать: