Создание первой в мире ядерной установки. История и типы атомных электростанций. История совершенствования типов ядерных реакторов

Первая в мире АЭС - вполне официальное название главной достопримечательности Обнинска, истории и устройству которого была посвящена . Построенная в 1951-54 годах, Обнинская атомная электростанция проработала 48 лет до 29 апреля 2002 года. Мощностью всего в 5 МВт она была в сотни раз меньше своих современных потомков, но именно она стала первенцем Мирного Атома. Более того, старейшие атомные электростанции Запада - британская Колдерс-Хилл и американская Шиппингпорт по истечении срока эксплуатации были разобраны. А на Обнинской АЭС с 2009 года действует отраслевой мемориальный комплекс - этакий квазимузей, попасть в который, впрочем, не так-то просто.

Прежде я показывал многие вехи советского атомного проекта. Вот например - в Киргизии, первый в СССР урановый рудник, где руду добывали кайлом и возили на ишаках. Вот соседний в Таджикистане - город первого советского урана. Вот , где в 1949 году была взорвана первая в СССР атомная бомба, раз и навсегда лишившая Америку монополии на супероружие. Вот, с холмов соседнего Верх-Нейвинска - , центр изотопного обогащения урана, а ещё есть Саров, Озёрск, Северск, Железногорск и другие ЗАТО, в которые ой как непросто попасть! Советский ядерный проект, как принято считать, начался с доклада Берии Сталину об американская разработках, и словами вождя - "Надо делать!". Потом был взрыв над Хиросимой, планы атомной бомбардировки советских городов, спешные поиски урана в самых разных местах от до , и наконец создание к 1950-м годам ещё не ядерного паритета с потенциальным противникам, но - оружия возмездия. Однако атомная бомба - это лишь конечный результат, а ключевое звено в цепочке её создания - ядерный реактор-"наработчик" плутония. Первый в мире ядерный реактор , за расположение и характерный внешний вид прозванный Чикагской поленницей, построил в 1942 году итальянец Энрико Ферми, и был он чисто экспериментальным. В 1943 году в Оук-Ридже, штат Тенниси, заработала Клинтонская поленница, или Х-1 - первый в мире реактор-"наработчик" в постоянной эксплуатации, а в 1948 году от него впервые в истории запитали электросеть предприятия. Первый в СССР экспериментальный реактор Ф-1 был пущен в 1946 году в московской Лаборатории №2 (ныне Курчатовский институт) и действовал до 2016 года, а в 1948 году в нынешнем Озёрске (Челябинская область) заработал первый промышленный реактор-наработчик А-1 , обеспечивший первую советскую атомную бомбу. Однако, как часто быает, теория опережала практику: если первый сугубо бумажный проект атомной бомбы в СССР появился ещё в 1940 году, то в 1945 академик Пётр Капица представил доклад "О применении внутриатомной энергии в мирных целях". Будущий Обнинск находился с самого начала чуть в стороне от атомного проекта, как бы над схваткой: давшая ему начало Лаборатория "В", основанная в 1946 году (с 1960 - Физико-энергетический институт), никогда не занималась ядерным оружием.

Путь к Первой в мире АЭС начнём в Старом городе - районе 1950-х годов, строившемся ещё в те времена, когда был здесь не город Обнинск, а посёлок при Объекте "В" и россыпь усадеб, сёл и интернатов вокруг него. О Старом городе с его тихим тенистыми улицами, грандиозными старыми соснами, тишиной и чистотой, я рассказывал в прошлой части, ну а теперь продолжим прогулку к началу проспекта Ленина. На кадре выше - ДК ФЭИ, законченный в 1954 году, почти одновременно с АЭС, и хотя памятник перед ним - Ленину, это крыльцо помнит весь цвет советской ядерной и космической науки.

В Старом городе удивительно стерильный пейзаж, словно попал в 1960-е годы:

А здесь не 21-й век вклинивается, а лишь 1980-е на заднем дворе:

Одно из старейших зданий Обнинска - школа (1949), где учились дети первых сотрудников Лаборатории "В", и великие учёные и конструкторы входили в её двери как просто чьи-то папы или мамы. Памятник перед школой, впрочем, не кому-нибудь из именитых родителей её учеников, а знакомому нам по прошлой части Станиславу Шацкому - его колония "Бодрая жизнь" отсюда за оврагом.

Последние кварталы перед ФЭИ, где улица делает весьма заметный поворот - в перспективе проспекта Ленина не корпус института, а дали за Протвой:

Дома на другой стороне квартала окнами глядят на Институт:

С фасадов дома в обоих кварталах к югу и к северу от проспекта Ленина одинаковы, и облик их явно рубежа 1940-50-х. Но дом №1 со двора выглядит совсем иначе:

В том же стиле и главный корпус ФЭИ, выглядывающий из-за проходной:

У проходной - ещё пара корпусов, один из которых занят институтскими офисами, другой - телефонной станцией:

Фотографировать на территории ФЭИ мне не дали разрешения, да и находится Обнинская АЭС на другой площадке, поэтому за главной проходной я не был. Но Главный корпус - здание с очень интересной историей, и по архитектуре его хорошо видно, что строилось оно никак не во времена "песен победителей": это был Испанский детский дом . Вернее, закладывалось здание в 1937 году как интернат для детей-туберкулёзников, но как раз накануне его открытия в Ленинград прибыл пароход "Сантай" из Бильбао, и вскоре поезд привёз на станцию Обнинское пять сотен испанских детей и несколько десятков их воспитателей. Частью это были дети испанских революционеров вроде Долорес Ибаррури, частью - просто сироты и беженцы, чьи дома разрушила Гражданская война. Опыт реабилитации беспризорников у рожденного своей Гражданской войной СССР был огромный, но с испанским темпераментам справиться было непросто: игрушки дети разобрали по винтику и распределили поровну, на лугу воевали с ромашками (на их родине это был символ детских фашистских организаций), первый же футбольный матч лишил здание большей части стёкол, а однажды маленькие испанцы забрались в аппаратную станции Обнинское и устроили семафорное светопреставление. Вся эта феерия продолжалась недолго - в войну Испанский детдом эвакуировали в Саратов, подросший Рубен Ибаррури стал лётчиком и погиб героем, а люди с испанскими фамилиями в России не редкость до сих пор (так, в студенчестве у меня была однокурсница Санчес-Перес). Капитальным зданиям в красивом чистом месте быстро нашёлся новый хозяин - Объект "В". И тем не менее в день моего приезда в ФЭИ творилась изрядная суета - делегация во главе с калужским губернатором и испанским послом приехала открывать мемориальную доску.

13. фото предоставлено пресс-службой АО ГНКЦ РФ ФЭИ

Дом с кадра №10 служил квартирами воспитателей. Судя по внешнему виду, к Испанскому детдому относилась и гостиница ФЭИ, фасад которой хорошо виден в конце обнимающей Институт улицы Менделеева, если стоя лицом к проходной посмотреть направо.

На первом этаже, за неприметной дверью - отличная столовая "Здоровье", среди посетителей которой много явных людей науки:

А если у гостиницы свернуть налево и пойти вдоль забора института, то у подножья одного из корпусов можно увидеть симпатичный деревянный домик.
На закрытой территории ФЭИ, у Главного корпуса, стоят памятники Дмитрию Блохинцеву и Александру Лейпунскому . Первый более известен как один из основателей знаменитого института ядерных исследований и автор ряда открытий в квантовой физике, возглавлял Объект "В" хоть и недолго, но в самое ответственное время - 1950-56 годах. Александр Лейпунский был научным руководителем института. Он заложил основы научной школы ФЭИ, цвет здешней науки - его ученики и ученики его учеников, поэтому с 1996 года институт называется ФЭИ имени Александра Лейпунского. Ну а этот деревянный особнячок известен как "домик Лейпунского" - здесь учёный жил в 1949-72 годах, до самой смерти. Ныне это не музей, а обычное и ветхое муниципальное жильё:

Углубившись дальше в лесок, можно увидеть ещё один похожий дом - это остатки усадьбы Турлики, более известной как Морозовская дача. В 1901 году здесь поселился дворянин и известный публицист Виктор Обнинский , владелец знакомой нам по прошлой части усадьбы Белкино, которому город через железнодорожную станцию обязан своим названием. В 1909 году Турлики купила Маргарита Морозова, сводная родственница Саввы Морозова, тектисльного короля из . При ней, в 1910-х годах, и были построены деревянные здания - дом Лейпунского изначально был особняком управляющего имением, а это - дом для гостей усадьбы:

А чуть поодаль - и каменный Главный дом, в состоянии столь же печальном:

В основе он был построен ещё при Обнинском в романтическом "английском" стиле. Над крышей возвышалась смотровая башня, а интерьеры украшала мебель из калужского дома имама Шамиля, сдавшегося русским властям предводителя бесконечной Кавказской войны. Здесь было отопление, лифты, полы с линолеумом - всё по последнему слову тогдашней техники. В 1910-х, при Морозовой, дом был перестроен, причём есть версия (вроде бы не совсем достоверная), что проект текстильная принцесса заказала у основателя московского модерна Льва Кекушева .

В революцию и гражданскую войну с Турликами случилось примерно то же, что и с большинством русских усадеб, и с 1918 года сюда из-за оврага распространилась "Бодрая жизнь". А в 1942 году Морозовскую дачу, вместе с Испанским детдомом, занял Штаб Западного фронта. Крыша усадьбы была выкрашена в цвет хаки, башня обрублена, а между деревьев натянута сеть из колючей проволоки, поверх которой набросали лапник - с воздуха усадьба была не видна. Под зданиями выросла целая система подземных коммуникаций - так называемые Жуковские пещеры, стараниями народной молвы разросшиеся в подобие средневековых катакомб. После войны Морозовская дача служила домом для высокопоставленных гостей, в первую очередь регулярно приезжавшего курировать работы Лаборатории "В" Игоря Курчатова. Затем это был профилакторий ФЭИ, а в 2016 году Турлики передали на баланс города. Усадьба теперь ждёт реставрации, а пока её не привели в порядок - вход на территорию закрыт, лишь музей иногда проводит экскурсии. Тем не менее, в доме сохранились интерьеры . Ну а я долго ходил по снегу вдоль забора, чтобы найти подходящий вид на фасад:

Всё это можно увидеть, просто приехав в Обнинск. Но ФЭИ раскинулся на пол-города, размером он достоин крупного завода (2км на 500м), состоит из двух разделённых дорогой площадок, и Обнинская АЭС находится в самом сердце той площадки, что подальше. Позвонив в музей, я узнал, что экскурсии на Первую в мире АЭС проводят бесплатно, но - для групп не менее 15 человек, без возможности подсоединения к готовой группе и без фотосъёмки. Затем я позвонил директору по коммуникациям Алексею Юрьевичу Громыко, и дальнейшей частью этого поста вы обязаны ему: моё предложение он встретил заинтересованно, но всё равно ещё неделя ушла на все согласования, звонки и письма в пресс-службу, музей и службу безопасности. В итоге мне было разрешено присоединиться к группе школьников и фотографировать "в установленных местах" - то есть, строго внутри здания Первой в мире АЭС. И вот, погуляв по городу, в условленное время я был у проходной, где ждал автобус с девятиклассниками одного из обнинских лицеев. Следующие кадры с граффити я снял на обратном пути в сумерках - проходные двух площадок соединяет всё та же улица Менделеева:

Лаборатория "В" - ФЭИ за свою историю разработал более 120 проектов ядерных реакторов. Но первоначальный проект "АМ-1" расшифровывался вовсе не как Атом Мирный, а как Атом Морской. Здесь не создавалось оружия, но всё-таки Лаборатория "В" тоже работала на оборнку: первым её проектом были ядерные реакторы для подводных лодок. Огромный уран-графитовый реактор не слишком подходил для кораблей, в отличие от электростанции. Первые в мире АЭС (в СССР) и АПЛ (в США) вошли в строй почти одновременно - в 1954 году, а вот создание советской атомной подводной лодки затянулось до 1959-го, и экипажи для неё также готовились в Обнинске. В последующие десятилетия в ФЭИ были созданы атомные реакторы, умеющие стоять на месте, ездить, плавать и даже летать.

Среди детищ ФЭИ были не только атомные реакторы большинства советских АЭС, кораблей и ледоколов, но и такая экзотика, как передвижные АЭС-вездеходы "Памир" (на кадре ниже они на фоне ТЭЦ Обнинской АЭС) для энергоснабжения геологических партий в глухих углах Крайнего Севера или космические ядерные реакторы "Бук" и "Топаз" с годичным сроком службы, обеспечивавшие работу аппаратуры спутников.

Подъездной путь ФЭИ, тепловоз на автобусной остановке. По эти колеям возили оборудование Обнинской АЭС:

Если рядом с основной площадкой стоит домик Лейпунского, то у второй площадки, что расположена на месте деревни Пяткино - соответственно, домик Курчатова. Это уже не усадьба - деревянный особняк, в котором сложно признать сталинский стиль, строился в 1952-53 годах. Сейчас он на охраняемой территории, выглядывая верхним этажом из-за ворот, но планируется обустроить в нём музей и интерактивный образовательный центр для детей.

Самое интересное в этом домике - с обратной стороны: заснеженная Скамейка Трёх "К", на которой сиживали Игорь Курчатов, Сергей Королёв и Мстислав Келдыш. И хотя точно не известно, были ли они здесь когда-либо все вместе, дух захватывает от мысли, какие перспективы могли на этой лавке обсуждаться тёплыми летними ночами, без лишнего официоза.

В помещении КПП я сдал в камеру хранения рюкзак с ноутбуком, телефон и флешки, а солдат-охранник сверил мой паспорт со списком, и вместе с экскурсоводом и ответственной по музею Инной Михайловной я прошёл в автобус. Группы "от 15 человек" здесь именно потому, что от КПП до АЭС чуть меньше километра, и конечно же пешком по территории столь режимного института экскурсантов не водят. Даже фасад Обнинской АЭС и информационные плакаты рядом с ним и то запрещено снимать!

25. фото предоставлено пресс-службой АО ГНКЦ РФ ФЭИ

Мирный атом создавался в условиях строжайшей секретности, с воздуха площадка должна была иметь минимум отличий от городских кварталов. Поэтому Обнинская АЭС состоит из двух зданий - слева от главной дороги собственно атомная станция с реактором, справа - ТЭЦ. Обывателю не вполне очевидно, что ядерная реакция используется для того, чтобы нагреть котёл, и даже атомные корабли фактически являются пароходами. Так и на ТЭЦ из реакторного зала раскалённый пар подавался через подземный паропровод. 26 июня 1954 года состоялся энергетический пуск Первой в мире АЭС, и когда над зданием ТЭЦ появилось облачко пара, еще не достаточно горячего чтобы крутить турбину, Игорь Курчатов воскликнул "С лёгким паром!": для атомщиков эта фраза значит примерно то же, что гагаринское "Поехали!" для космонавтов. Тех труб, из которых пошёл "лёгкий пар", не сохранилось, они видны на чёрно-белой фотографии с "Памирами" (№21а), а нынешние полосатые трубы - позднесоветской постройки.

Нынешний статус Обнинской АЭС - двоякий. С мощностью 5 МВт к концу ХХ века "старушка" (как ласково её называли атомщики) работала в основном с научными целями, а также нарабатывала изотопы для медицины. Её экспулатация не окупалась, проектный срок вышел давно (хотя держалась "старушка" бодро и могла бы проработать ещё годы), и в 2002 году Обнинскую АЭС было решено остановить - первой из советских атомных электростанций. Но ломать её здание не стали, и параллельно с демонтажем оборудования шло создание отраслевого мемориального комплекса. Для экскурсантов он открылся в 2009 году, работы по консервации завершились в 2015-м, но и теперь Первая в мире АЭС напоминает скорее действующее предприятие, чем музей, и в её узких коридорах мы не раз и не два встречали сосредоточенных сотрудников. На входе, по регламенту, группа облачается в белые халаты и бахиллы.

Экскурсия проходит 4 объекта. Первый - это пост контроля и радиационной безопасности на первом этаже. Самописцы и циферблаты измерительных приборов здесь непрерывно показывали данные об уровне радиации и составе воздуха в рабочих помещениях станции. Вентили на стене слева соответствуют каждый какому-то из помещений, откуда при их нажатии бралась на анализ проба воздуха.

Мелкие сбои в работе первой в мире атомной станции поначалу происходили регулярно, порой по несколько раз на дню, но ни один из них не обернулся серьёзным ЧП. За 48 лет работы на Обнинской АЭС не было ни единого опасного выброса радиации в окружающую среду или случаев облучения сотрудников (а вот на других объектах института в том же 1954 году имело места куда более серьёзное происшествие - не с погибшим, но с пострадавшими).

Дозиметры, в том числе "карандаш" - на рабочем месте такой висел на груди у каждого сотрудника:

Костюмы радиационной защиты. Такие использовались при ремонте оборудования в помещении «горячей камеры», где режут отработавшие тепловыделяющие сборки. При надевании такой ещё и поддувают изнутри, чтобы при малейшей разгерметизации человек заметил это по выходящим воздуху, и успел покинуть опасное помещение, пока воздух из костюма выходит, не давая заражённому воздуху проникнуть под костюм.

Вообще же про АЭС сложно рассказывать хотя бы потому, что большая часть её техники в принципе не понятна далёким от темы людям. Вот например прибор УИМ-2Д для измерения скорости импульсов - многим ли из читающих эти строки это о чём-нибудь говорит?

Прямиком в кабинет начальника станции. Обстановка, пока АЭС действовала, здесь неоднократно менялась, и нынешняя - воссоздана по состоянию на 1950-е годы. На стене - портреты директоров, на столе - небольшая экспозиция измерительных приборов:

Но главный артефакт этой комнаты - гостевая книга. Первоначально Обнинская АЭС строилась в такой секретной обстановке, что даже не все участники строительства знали, чем именно они занимаются - просто делали рассчёты, не будучи в курсе всей картины. Когда "Правда" написала о запуске Мирного Атома, даже не все сотрудники Объекта "В" знали, что этот Мирный Атом - у них, а когда шедшие мимо мужики поинтересовались у атомщиков, накрывших у берега Протвы поляну, "Что празднуете?", те ответили - "Лунное затмение празднуем!". Но вскоре Мирный Атом начал открываться миру, и только при Советах в составе различных делегаций Обнинскую АЭС посетило более 60 тысяч человек (для сравнения, ныне посещаемость музея - 3-5 тысяч экскурсантов в год).

Старая гостевая книга с афтографами Георгия Жукова, Юрия Гагарина, Хо Ши Мина, Индиры Ганди, Броза Тито и других уже легендарных личностей ХХ века ныне хранится в Москве. Но и нынешняя книга с надписями на всех языках мира выглядит впечатляюще. Именитые гости бывают на Первой в мире АЭС и ныне - например, несколько лет назад её посещал британский принц Майкл Кентский.

А неподалёку, за дверью, отмеченной детскими рисунками и памятником Курчатову ("шумерскую" бороду он носил, кстати, потому, что был для своего значения весьма молод и старался среди ветеранов физики выглядеть солиднее)...

Находится центральный пульт АЭС. Странная штуковина слева меня озадачила своим абсолютным космическим видом, и предназначалась она действительно для космоса. Это ни что иное, как уже упоминавшийся "Бук" (вернее, его макет), космическая ядерно-энергетическая установка для питания бортовой аппаратуры. С 1970 года с ней было запущено не менее 30 космических аппаратов.

Пульт управления атомной станцией:

Вновь, как и (с его пульта - моя нынешняя аватарка), не могу не восхититься техническим дизайном советской атомной техники.

А с другой стороны - тепловыделяющие сборки для разных типов реакторов (РБМК, ВВР и БН-600). ТВС - это то, что загружают в активную зону ядерного реактора. Каждая сборка представляет собой "пучок" ТВЭЛов - тепловыделяющих элементов, длинных стержней с таблетками ядерного топлива внутри, и устроена так, чтобы ядерная реакция была эффективной, но управляемой. Слово "ТВЭЛ" родилось также в Лаборатории "В" в 1951 году, ещё до строительства Обнинской АЭС, и создателем их был Владимир Малых , которого коллеги называли "королём ТВЭЛов". Ныне на Россию в лице компании "ТВЭЛ" с основным производством в подмосковной Электростали приходится 17% мирового рынка атомного топлива, и все 100% - для некоторых типов реакторов.

Ну а последний пункт - святая святых АЭС, её реактор. Путь к нему - по неприметной лестнице в полу, по узким извилистым коридорам:

Сначала коридоры приводят на пульт управления краном. С этого пульта работа шла не всегда, а только при открытии крышки реактора для замены активных технологических каналов:

За зелёными оконцами - будто бы макеты. На самом деле такой эффект даёт полметра защитного кварцевого стекла:

В реакторый зал кабина крановщика глядит как угрюмый трёхглазый марсианин:

Справа внизу характерное "решето", бассейн выдержки для отработанных каналов:

Сами каналы, само собой без топилва и "чистые":

Когда же реактор был закрыт многотонной крышкой, крановщик работал с пульта на застеклённой площадке практически над самым реактором. Главным конструктором реактора Обнинской АЭС был Николай Доллежаль , участвовавший в создании реакторов и последующих советских атомных станций.

Экскурсовод сказала фразу "Америка - страна атомной тьмы, Россия - страна атомного света". США создали атомную бомбу и сбросили её на город, а СССР хоть и отставал на 4-5 лет по оружию и кораблям, а создал первую в мире атомную электростанцию. В 1956 году дала ток первая АЭС в Британии, а в 1957 - в США. В 1958 году заработала Сибирская АЭС под Томском, в десятки раз более мощная, чем Обнинская, но всё же в основном занимавшаяся наработкой плутония. То же самое относится и к пущенной в 1964 году Белоярской АЭС на Урале, ныне старейшей действующей в России. А первой полностью гражданской атомной электростанцией в стране стала Нововоронежская, заработавшая в том же 1964 году. Но самой известной атомной станцией Советского Союза, как ни печально, так и осталась , и в этом есть большая несправедливость. Когда там случилась катастрофа, в иностранной прессе появлялись заголовки вроде "Дикарей нельзя подпускать к высоким технологиям", и авторы их явно успели забыть, кто именно эти технологии создал и впервые воплотил. На данный момент у реактора Обнинской АЭС 441 живой "потомок", ещё 40 своих реакторов после Фукусимы заглушила Япония. А Россия продолжает строить атомные станции и поставлять к ним топливо и у себя, и по всему миру.

Вот только музей Первой в мире АЭС вряд ли станет когда-нибудь легкодоступным - слишком уж далеко от проходной она находится, и слишком уж ответственную работу делает ФЭИ, чтобы сделать проход к ней свободным. Напоследок - вид ФЭИ с поезда, Обнинской АЭС принадлежат высокая труба основного корпуса слева и низкие трубы ТЭЦ в середине.

Обнинск образует хорошо заметную агломерацию, куда входят Балабаново, Боровск, Малоярославец и множество посёлков поменьше и сёл. Как уже говорилось в прошлой части, ныне это один из самых благополучных уголков России. Ну а за исторический центр этой системы отвечает Боровск, куда отправимся в следующих 3-4 частях.

КАЛУЖСКАЯ ОБЛАСТЬ-2018
и оглавление.
и оглавление.
. Город.
Обнинск. Первая в мире АЭС.
Боровск. Пафнутьев монастырь и окрестности.
Боровск. Центр.
Боровск. Предместья и детали.
Калуга. Общий колорит.
Калуга. Старый торг и окрестности.
Калуга. Церкви.
Калуга. Палаты и особняки.
Калуга. Колыбель Космонавтики.

Атомная электростанция или сокращенно АЭС это комплекс технических сооружений, предназначенных для выработки электрической энергии путём использования энергии, выделяемой при контролируемой ядерной реакции.

Во второй половине 40-х годов, перед тем, как были закончены работы по созданию первой атомной бомбы которая была испытана 29 августа 1949 года, советские ученые приступили к разработке первых проектов мирного использования атомной энергии. Основным направлением проектов была электроэнергетика.

В мае 1950 года в районе поселка Обнинское Калужской области, начато строительство первой в мире АЭС.

Впервые электроэнергию с помощью ядерного реактора получили 20 декабря 1951 года в штате Айдахо в США.

Для проверки работоспособности генератор был подключен к четырем лампам накаливания, ни то не ожидал, что лампы зажгутся.

С этого момента человечество стало использовать энергию ядерного реактора для получения электричества.

Первые Атомные электростанции

Строительство первой в мире атомная электростанция мощностью 5 МВт было закончено в 1954 году и 27 июня 1954 года она была запущена, так начала работать .


В 1958 была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт.

Строительство Белоярской промышленной АЭС началось так же в 1958 году. 26 апреля 1964 генератор 1-й очереди дал ток потребителям.

В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 350 МВт запущен в декабре 1969.

В 1973 г. запущена Ленинградская АЭС.

В других странах первая АЭС промышленного назначения была введена в эксплуатацию в 1956 в Колдер-Холле (Великобритания) ее мощность составляла 46 МВт.

В 1957 году вступила в строй АЭС мощностью 60 МВт в Шиппингпорте (США).

Мировыми лидерами в производстве ядерной электроэнергии являются:

  1. США (788,6 млрд кВт ч/год),
  2. Франция(426,8 млрд кВт ч/год),
  3. Япония (273,8 млрд кВт ч/год),
  4. Германия (158,4 млрд кВт ч/год),
  5. Россия (154,7 млрдкВт ч/год).

Классификация АЭС

Атомные электростанции можно классифицировать по нескольким направлениям:

По типу реакторов

  • Реакторы на тепловых нейтронах, использующие специальные замедлители для увеличения вероятностипоглощения нейтрона ядрами атомов топлива
  • Реакторы на лёгкой воде
  • Реакторы на тяжёлой воде
  • Реакторы на быстрых нейтронах
  • Субкритические реакторы, использующие внешние источники нейтронов
  • Термоядерные реакторы

По виду отпускаемой энергии

  1. Атомные электростанции (АЭС), предназначенные для выработки только электроэнергии
  2. Атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию

На атомных станциях, расположенных на территории России имеются теплофикационные установки, они необходимы для подогрева сетевой воды.

Виды топлива используемого на Атомных электростанциях

На атомных электростанциях возможно использование несколько веществ, благодаря которым можно выработать атомную электроэнергию, современное топливо АЭС – это уран, торий и плутоний.

Ториевое топливо сегодня не применяется в атомных электростанциях, для этого есть ряд причин.

Во-первых , его сложнее преобразовать в тепловыделяющие элементы, сокращенно ТВЭлы.

ТВЭлы - это металлические трубки, которые помещаются внутрь ядерного реактора. Внутри

ТВЭлов находятся радиоактивные вещества. Эти трубки являются хранилищами ядерного топлива.

Во-вторых , использование ториевого топлива предполагает его сложную и дорогую переработку уже после использования на АЭС.

Плутониевое топливо так же не применяют в атомной электроэнергетике, в виду того, что это вещество имеет очень сложный химический состав, система полноценного и безопасного применения еще не разработана.

Урановое топливо

Основное вещество, вырабатывающее энергию на ядерных станциях – это уран. На сегодняшний день уран добывается несколькими способами:

  • открытым способом в карьерах
  • закрытым в шахтах
  • подземным выщелачиванием, при помощи бурения шахт.

Подземное выщелачивание, при помощи бурения шахт происходит путем размещения раствора серной кислоты в подземных скважинах, раствор насыщается ураном и выкачивается обратно.

Самые крупные запасы урана в мире находятся в Австралии, Казахстане, России и Канаде.

Самые богатые месторождения в Канаде, Заире, Франции и Чехии. В этих странах из тонны руды получают до 22 килограмм уранового сырья.

В России из одной тонны руды получают чуть больше полутора килограмм урана. Места добычи урана нерадиоактивны.

В чистом виде это вещество мало опасно для человека, гораздо большую опасность представляет радиоактивный бесцветный газ радон, который образуется при естественном распаде урана.

Подготовка урана

В виде руды уран в АЭС не используют, руда не вступает в реакцию. Для использования урана на АЭС сырье перерабатывается в порошок – закись окись урана, а уже после оно становится урановым топливом.

Урановый порошок превращается в металлические «таблетки», - он прессуется в небольшие аккуратные колбочки, которые обжигаются в течение суток при температурах больше 1500 градусов по Цельсию.

Именно эти урановые таблетки и поступают в ядерные реакторы, где начинают взаимодействовать друг с другом и, в конечном счете, дают людям электроэнергию.

В одном ядерном реакторе одновременно работают около 10 миллионов урановых таблеток.

Перед размещением урановых таблеток в реакторе они помещаются в металлические трубки из циркониевых сплавов - ТВЭлы, трубки соединяются между собой в пучки и образуют ТВС – тепловыделяющие сборки.

Именно ТВС называются топливом АЭС.

Как происходит переработка топлива АЭС

Спустя год использования урана в ядерных реакторах необходимо производить его замену.

Топливные элементы остужают в течение нескольких лет и отправляют на рубку и растворение.

В результате химической экстракции выделяются уран и плутоний, которые идут на повторное использование, из них делают свежее ядерное топливо.

Продукты распада урана и плутония направляются на изготовление источников ионизирующих излучений, их используют в медицине и промышленности.

Все, что остается после этих манипуляций, отправляется в печь для разогрева, из этой массы варится стекло, такое стекло находится в специальных хранилищах.

Из остатков изготавливают стекло не для массового применения, стекло используется для хранения радиоактивных веществ.

Из стекла сложно выделить остатки радиоактивных элементов, которые могут навредить окружающей среде. Недавно появился новый способ утилизации радиоактивных отходов.

Быстрые ядерные реакторы или реакторы на быстрых нейтронах, которые работают на переработанных остатках ядерного топлива.

По подсчетам ученых, остатки ядерного топлива, которые сегодня хранятся в хранилищах, способны на 200 лет обеспечить топливом реакторы на быстрых нейтронах.

Помимо этого, новые быстрые реакторы могут работать на урановом топливе, которое делается из 238 урана, это вещество не используется в привычных атомных станциях, т.к. сегодняшним АЭС проще перерабатывать 235 и 233 уран, которого в природе осталось немного.

Таким образом, новые реакторы – это возможность использовать огромные залежи 238го урана, которые до этого не применялись.

Принцип работы АЭС

Принцип работы атомной электростанции на двухконтурном водо-водяном энергетическом реакторе (ВВЭР).

Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура.

На выходе из турбин, пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища.


Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя. Давление в 1-м контуре может доходить до 160 атмосфер (ВВЭР-1000).

Помимо воды, в различных реакторах в качестве теплоносителя может применяться также расплавленный натрий или газ.

Использование натрия позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в натриевом контуре не превышает атмосферное), избавиться от компенсатора давления, но создаёт свои трудности, связанные с повышенной химической активностью этого металла.

Общее количество контуров может меняться для различных реакторов, схема на рисунке приведена для реакторов типа ВВЭР (Водо-Водяной Энергетический Реактор).

Реакторы типа РБМК (Реактор Большой Мощности Канального типа) использует один водяной контур, а реакторы БН (реактор на Быстрых Нейтронах) - два натриевых и один водяной контуры.

В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях), которые благодаря своим размерам обычно являются самой заметной частью атомной электростанции.

Устройство ядерного реактора

В ядерном реакторе используется процесс деления ядер, при котором тяжелое ядро распадается на два более мелких фрагмента.

Эти осколки находятся в очень возбужденном состоянии и испускают нейтроны, другие субатомные частицы и фотоны.

Нейтроны могут вызвать новые деления, в результате которых их излучается еще больше, и так далее.

Такой непрерывный самоподдерживающийся ряд расщеплений называется цепной реакцией.

При этом выделяется большое количество энергии, производство которой является целью использования АЭС.

Принцип работы ядерного реактора и атомной электростанции таков, что коло 85% энергии расщепления высвобождается в течение очень короткого промежутка времени после начала реакции.

Остальная часть вырабатывается в результате радиоактивного распада продуктов деления, после того как они излучили нейтроны.

Радиоактивный распад является процессом, при котором атом достигает более стабильного состояния. Он продолжается и после завершения деления.

Основные элементы ядерного реактора

  • Ядерное топливо: обогащённый уран, изотопы урана и плутония. Чаще всего используется уран 235;
  • Теплоноситель для вывода энергии, которая образуется при работе реактора: вода, жидкий натрий и др.;
  • Регулирующие стержни;
  • Замедлитель нейтронов;
  • Оболочка для защиты от излучения.

Принцип действия ядерного реактора

В активной зоне реактора располагаются тепловыделяющие элементы (ТВЭЛ) – ядерное топливо.

Они собраны в кассеты, включающие в себя по несколько десятков ТВЭЛов. По каналам через каждую кассету протекает теплоноситель.

ТВЭЛы регулируют мощность реактора. Ядерная реакция возможна только при определённой (критической) массе топливного стержня.

Масса каждого стержня в отдельности ниже критической. Реакция начинается, когда все стержни находятся в активной зоне. Погружая и извлекая топливные стержни, реакцией можно управлять.

Итак, при превышении критической массы топливные радиоактивные элементы, выбрасывают нейтроны, которые сталкиваются с атомами.

В результате образуется нестабильный изотоп, который сразу же распадается, выделяя энергию, в виде гамма излучения и тепла.

Частицы, сталкиваясь, сообщают кинетическую энергию друг другу, и количество распадов в геометрической прогрессии увеличивается.

Это и есть цепная реакция - принцип работы ядерного реактора. Без управления она происходит молниеносно, что приводит к взрыву. Но в ядерном реакторе процесс находится под контролем.

Таким образом, в активной зоне выделяется тепловая энергия, которая передаётся воде, омывающей эту зону (первый контур).

Здесь температура воды 250-300 градусов. Далее вода отдаёт тепло второму контуру, после этого – на лопатки турбин, вырабатывающих энергию.

Преобразование ядерной энергии в электрическую можно представить схематично:

  • Внутренняя энергия уранового ядра
  • Кинетическая энергия осколков распавшихся ядер и освободившихся нейтронов
  • Внутренняя энергия воды и пара
  • Кинетическая энергия воды и пара
  • Кинетическая энергия роторов турбины и генератора
  • Электрическая энергия

Активная зона реактора состоит из сотен кассет, объединенных металлической оболочкой. Эта оболочка играет также роль отражателя нейтронов.

Среди кассет вставлены управляющие стержни для регулировки скорости реакции и стержни аварийной защиты реактора.

Атомная станция теплоснабжения

Первые проекты таких станций были разработаны ещё в 70-е годы XXвека, но из-за наступивших в конце 80-х годов экономических потрясений и жёсткого противодействия общественности, до конца ни один из них реализован не был.

Исключение составляют Билибинская АЭС небольшой мощности, она снабжает теплом и электричеством посёлок Билибино в Заполярье (10 тыс. жителей) и местные горнодобывающие предприятия, а также оборонные реакторы (они занимаются производством плутония):

  • Сибирская АЭС, поставляющая тепло в Северск и Томск.
  • Реактор АДЭ-2 на Красноярском горно-химического комбинате, с 1964 г.поставляющий тепловую и электрическую энергию для города Железногорска.

На момент кризиса было начато строительство нескольких АСТ на базе реакторов, аналогичных ВВЭР-1000:

  • Воронежская АСТ
  • Горьковская АСТ
  • Ивановская АСТ (только планировалась)

Строительство этих АСТ было остановлено во второй половине 1980-х или начале 1990-х годов.

В 2006 году концерн «Росэнергоатом» планировал построить плавучую АСТ для Архангельска, Певека и других заполярных городов на базе реакторной установки КЛТ-40, используемой на атомных ледоколах.

Имеется проект, строительства необслуживаемой АСТ на базе реактора «Елена», и передвижной (железнодорожным транспортом) реакторной установки «Ангстрем»

Недостатки и преимущества АЭС

Любой инженерный проект имеет свои положительные и отрицательные стороны.

Положительные стороны атомных станций:

  • Отсутствие вредных выбросов;
  • Выбросы радиоактивных веществ в несколько раз меньше угольной эл. станции аналогичной мощности (золаугольных ТЭС содержит процент урана и тория, достаточный для их выгодного извлечения);
  • Небольшой объём используемого топлива и возможность его повторного использования после переработки;
  • Высокая мощность: 1000-1600 МВт на энергоблок;
  • Низкая себестоимость энергии, особенно тепловой.

Отрицательные стороны атомных станций:

  • Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению;
  • Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;
  • Последствия возможного инцидента крайне тяжелые, хотя его вероятность достаточно низкая;
  • Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700-800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.

Научные разработки в сфере атомной энергетики

Конечно, имеются недостатки и опасения, но при этом атомная энергия представляется самой перспективной.

Альтернативные способы получения энергии, за счёт энергии приливов, ветра, Солнца, геотермальных источников и др. в настоящее время имеют не высокий уровнем получаемой энергии, и её низкой концентрацией.

Необходимые виды получения энергии, имеют индивидуальные риски для экологии и туризма, например производство фотоэлектрических элементов, которое загрязняет окружающую среду, опасность ветряных станций для птиц, изменение динамики волн.

Ученые разрабатывают международные проекты ядерных реакторов нового поколения, например ГТ-МГР, которые позволят повысить безопасность и увеличить КПД АЭС.

Россия начала строительство первой в мире плавающей АЭС, она позволяет решить проблему нехватки энергии в отдалённых прибрежных районах страны.

США и Япония ведут разработки мини-АЭС, с мощностью порядка 10-20 МВт для целей тепло и электроснабжения отдельных производств, жилых комплексов, а в перспективе - и индивидуальных домов.

Уменьшение мощности установки предполагает рост масштабов производства. Малогабаритные реакторы создаются с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества.

Производство водорода

Правительством США принята Атомная водородная инициатива. Совместно с Южной Кореей ведутся работы по созданию атомных реакторов нового поколения, способных производить в больших количествах водород.

INEEL (Idaho National Engineering Environmental Laboratory) прогнозирует, что один энергоблок атомной электростанции следующего поколения, будет производить ежедневно водород, эквивалентный 750000 литров бензина.

Финансируются исследования возможностей производства водорода на существующих атомных электростанциях.

Термоядерная энергетика

Ещё более интересной, хотя и относительно отдалённой перспективой выглядит использование энергии ядерного синтеза.

Термоядерные реакторы, по расчётам, будут потреблять меньше топлива на единицу энергии, и как само это топливо (дейтерий, литий, гелий-3), так и продукты их синтеза нерадиоактивны и, следовательно, экологически безопасны.

В настоящее время при участии России, на юге Франции ведётся строительство международного экспериментального термоядерного реактора ITER.

Что такое КПД

Коэффициент полезного действия (КПД) - характеристика эффективности системы или устройства в отношении преобразования или передачи энергии.

Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой. КПД является безразмерной величиной и часто измеряется в процентах.

КПД атомной электростанции

Наиболее высокий КПД (92-95%) – достоинство гидроэлектростанций. На них генерируется 14% мировой электро мощности.

Однако, этот тип станций наиболее требователен к месту возведения и, как показала практика, весьма чувствителен к соблюдению правил эксплуатации.

Пример событий на Саяно-Шушенской ГЭС показал, к каким трагическим последствиям может привести пренебрежение правилами эксплуатации в стремлении снизить эксплуатационные издержки.

Высоким КПД (80%) обладают АЭС. Их доля в мировом производстве электроэнергии составляет 22%.

Но АЭС требуют повышенного внимания к проблеме безопасности, как на стадии проектирования, так и при строительстве, и во время эксплуатации.

Малейшие отступления от строгих регламентов обеспечения безопасности для АЭС, чревато фатальными последствиями для всего человечества.

Кроме непосредственной опасности в случае аварии, использование АЭС сопровождается проблемами безопасности, связанными с утилизацией или захоронением отработанного ядерного топлива.

КПД тепловых электростанций не превышает 34%, на них вырабатывается до шестидесяти процентов мировой электроэнергии.

Кроме электроэнергии на тепловых электростанциях производится тепловая энергия, которая в виде горячего пара или горячей воды может передаваться потребителям на расстояние в 20-25 километров. Такие станции называют ТЭЦ (Тепло Электро Централь).

ТЕС и ТЕЦ не дорогие в строительстве, но если не будут приняты специальные меры, они неблагоприятно воздействуют на окружающую среду.

Неблагоприятное воздействие на окружающую среду зависит от того, какое топливо применяется в тепловых агрегатах.

Наиболее вредны продукты сгорания угля и тяжёлых нефтепродуктов, природный газ менее агрессивен.

ТЭС являются основными источниками электроэнергии на территории России, США и большинства стран Европы.

Однако, есть исключения, например, в Норвегии электроэнергия вырабатывается в основном на ГЭС, а во Франции 70% электроэнергии генерируется на атомных станциях.

Первая электростанция в мире

Самая первая центральная электростанция, the Pearl Street, была сдана в эксплуатацию 4 сентября 1882 года в Нью-Йорке.

Станция была построена при поддержке Edison Illuminating Company, которую возглавлял Томас Эдисон.

На ней были установлены несколько генераторов Эдисона общей мощностью свыше 500 кВт.

Станция снабжала электроэнергией целый район Нью-Йорка площадью около 2,5 квадратных километров.

Станция сгорела дотла в 1890году, сохранилась только одна динамо-машина, которая сейчас находится в музее the Greenfield Village, Мичиган.

30 сентября 1882 года заработала первая гидроэлектростанция the Vulcan Street в штате Висконсин. Автором проекта был Г.Д. Роджерс, глава компании the Appleton Paper & Pulp.

На станции был установлен генератор с мощностью приблизительно 12.5 кВт. Электричества хватало на дом Роджерса и на две его бумажные фабрики.

Электростанция Gloucester Road. Брайтон был одним из первых городов в Великобритании с непрерывным электроснабжением.

В 1882 году Роберт Хаммонд основал компанию Hammond Electric Light , а 27 февраля 1882 года он открыл электростанцию Gloucester Road.

Станция состояла из динамо щетки, которая использовалась, чтобы привести в действие шестнадцать дуговых ламп.

В 1885 году электростанция Gloucester была куплена компанией Brighton Electric Light. Позже на этой территории была построена новая станция, состоящая из трех динамо щеток с 40 лампами.

Электростанция Зимнего дворца

В 1886 году в одном из внутренних дворов Нового Эрмитажа была построена электростанция.

Электростанция была крупнейшей во всей Европе, не только на момент постройки, но и на протяжении последующих 15 лет.


Ранее для освещения Зимнего дворца использовались свечи, с 1861 года начали использовать газовые светильники. Так как электролампы имели большее преимущество, были начаты разработки по внедрению электроосвещения.

Прежде чем здание было полностью переведено на электричество, освещении при помощи ламп использовали для освещения дворцовых зал во время рождественских и новогодних праздников 1885 года.

9 ноября 1885 года, проект строительства «фабрики электричества» был одобрен императором Александром III. Проект включал электрификацию Зимнего дворца, зданий Эрмитажа, дворовой и прилегающей территории в течение трех лет до 1888 года.

Была необходимость исключить возможность вибрации здания от работы паровых машин, размещение электростанции предусмотрели в отдельном павильоне из стекла и металла. Его разместили во втором дворе Эрмитажа, с тех пор называемом «Электрическим».

Как выглядела станция

Здание станции занимало площадь 630 м², состояло из машинного отделения с 6 котлами, 4 паровыми машинами и 2 локомобилями и помещения с 36 электрическими динамо-машинами. Общая мощность достигала 445 л.с.

Первыми осветили часть парадных помещений:

  • Аванзал
  • Петровский зал
  • Большой фельдмаршальский зал
  • Гербовый зал
  • Георгиевский зал
Было предложено три режима освещения:
  • полное (праздничное) включать пять раз в году (4888 ламп накаливания и 10 свечей Яблочкова);
  • рабочее – 230 ламп накаливания;
  • дежурное (ночное) – 304 лампы накаливания.
    Станция потребляла около 30 тыс. пудов (520 т) угля в год.

Крупные ТЭС, АЭС и ГЭС России

Крупнейшие электростанции России по федеральным округам:

Центральный:

  • Костромская ГРЭС, которая работает на мазуте;
  • Рязанская станция, основным топливом для которой является уголь;
  • Конаковская, которая может работать на газе и мазуте;

Уральский:

  • Сургутская 1 и Сургутская 2. Станции, которые являются одними из самых крупных электростанций РФ. Обе они работают на природном газе;
  • Рефтинская, функционирующая на угле и являющаяся одной из крупнейших электростанций на Урале;
  • Троицкая, также работающая на угле;
  • Ириклинская, главным источником топлива для которой является мазут;

Приволжский:

  • Заинская ГРЭС, работающая на мазуте;

Сибирский ФО:

  • Назаровская ГРЭС, потребляющая в качестве топлива мазут;

Южный:

  • Ставропольская, которая также может работать на совмещенном топливе в виде газа и мазута;

Северо-Западный:

  • Киришская на мазуте.

Список электростанций России, которые вырабатывают энергию при помощи воды, расположены на территории Ангаро-Енисейского каскада:

Енисей:

  • Саяно-Шушенская
  • Красноярская ГЭС;

Ангара:

  • Иркутская
  • Братская
  • Усть-Илимская.

Атомные электростанции России

Балаковская АЭС

Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.

Белоярская АЭС

Расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).

На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.

В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.

БН-600 сдан в эксплуатацию в апреле 1980 - первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.

БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.

Билибинская АЭС

Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.

Вырабатывает электрическую и тепловую энергию.

Калининская АЭС

Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.

Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.

4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.

Кольская АЭС

Расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.

Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции - 1760 МВт.

Курская АЭС

Одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.

Мощность станции - 4000 МВт.

Ленинградская АЭС

Одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.

Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.

Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.

Мощность станции - 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт ч.

Нововоронежская АЭС

Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.

На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.

Мощность станции (без учёта ) - 1440 МВт.

Ростовская АЭС

Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.

В 2001-2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС.

В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.

Смоленская АЭС

Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.

В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.

Атомные электростанции США

АЭС Шиппингпорт с номинальной мощностью 60 МВт, открыта в 1958 году в штате Пенсильвания. После 1965 года произошло интенсивное сооружение атомных электростанций по всей территории Штатов.

Основная часть атомных станций Америки была сооружена в дальнейшие после 1965 года 15 лет, до наступления первой серьезной аварии на АЭС на планете.

Если в качестве первой аварии вспоминается авария на Чернобыльской АЭС, то это не так.

Причиной аварии стали нарушения в системе охлаждения реактора и многочисленные ошибки обслуживающего персонала. В итоге расплавилось ядерное топливо. На устранение последствий аварии ушло около одного миллиарда долларов, процесс ликвидации занял 14 лет.


После авария правительство Соединенных Штатов Америки откорректировало условия безопасности функционирования всех АЭС в государстве.

Это соответственно привело к продолжению периода строительства и значительному подорожанию объектов «мирного атома». Такие изменения затормозили развитие общей индустрии в США.

В конце двадцатого века в Соединенных Штатах было104 работающих реактора. На сегодняшний день США занимают первое место на земле по численности ядерных реакторов.

С начала 21 столетия в Америке было остановлено четыре реактора в 2013 году, и начато строительство ещё четырех.

Фактически на сегодняшний момент в США функционирует 100 реакторов на 62 атомных электростанциях, которыми производится 20% от всей энергии в государстве.

Последний сооруженный реактор в США был введен в эксплуатацию в 1996 году на электростанции Уотс-Бар.

Власти США в 2001 году приняли новое руководство по энергетической политике. В нее внесен вектор развития атомной энергетики, посредствам разработки новых видов реакторов, с более подходящим коэффициентом экономности, новых вариантов переработки отслужившего ядерного топлива.

В планах до 2020 года было сооружение нескольких десятков новых атомных реакторов, совокупной мощностью 50 000 МВт. Кроме того, достичь поднятия мощности уже имеющихся АЭС приблизительно на 10 000 МВт.

США - лидер по количеству атомных станций в мире

Благодаря внедрению данной программы, в Америке в 2013 году было начато строительство четырех новых реакторов – два из которых на АЭС Вогтль, а два других на Ви-Си Саммер.

Эти четыре реактора новейшего образца – АР-1000, производства Westinghouse.

В какой стране появилась первая в мире АЭС? Кто и как создавал первопроходца в области атомной энергетики? Сколько АЭС в мире? Какая ядерная станция считается самой большой и мощной? Хотите узнать? Мы обо всем расскажем!

Предпосылки к созданию первой в мире АЭС

Изучение реакции атомов велось с начала 20го века во всех развитых странах мира. О том, что людям удалось подчинить себе энергию атома, первыми заявили в США, когда 6 августа 1945 года провели испытания, сбросив атомную бомбу, на японские города Хиросима и Нагасаки. Параллельно велось изучение применения атома в мирных целях. Разработки такого рода были и в СССР.

Именно в СССР появилась первая в мире АЭС. Ядерный потенциал был использован не в военных, а в мирных целях.

Еще в 40е Курчатов говорил о необходимости мирного изучения атома в целях извлечения его энергии на благо людей. Но попытки создания атомной энергетики прерывал Лаврентий Берия, в те годы именно он курировал проекты изучения атома. Берия считал, что атомная энергия может быть сильнейшим оружием в мире, способным сделать СССР непобедимой державой. Ну, собственно по поводу сильнейшего оружия он не ошибался…

После взрывов в Херосиме и Нагасаке в СССР началось усиленное изучение ядерной энергетики. Ядерное оружие в тот момент было гарантом безопасности страны. После испытаний советского ядерного оружия на Семипалатинском полигоне, в СССР началось активное развитие ядерной энергетики. Ядерное оружие уже было создано и испытано, можно было сосредоточиться на использовании атома в мирных целях.

Как создавалась первая в мире АЭС?

Для атомного проекта СССР в 1945 — 1946 годах были созданы 4 лаборатории ядерной энергетики. Первая и четвертая в Сухуми, вторая – в Снежинске и третья вблизи станции Обнинская в Калужской области, называлась она лаборатория В. Сегодня это физико-энергетический институт им. Лейпуцкого.

Первая в мире АЭС называлась Обнинской.

Она создавалась с участием немецких физиков, которых после окончания войны добровольно — принудительно выписывали из Германии для работы в атомных лабораториях Союза, точно так же с немецкими учеными поступали и в США. Одним из прибывших был физик-ядерщик Хайнс Позе, который какое-то время возглавлял Обнинскую лабораторию В. Так что своим открытием первая атомная станция обязана не только советским, но и немецким ученым.

Разрабатывалась первая в мире АЭС в Курчатовской лаборатории №2 и в «НИИхиммаше» под руководством Николая Доллежаля. Доллежаль был назначен главным конструктором ядерного реактора будущей АЭС. Создавали первую АЭС мира в Обнинской лаборатории В, все работы курировал сам Игорь Васильевич Курчатов, которого считали «отцом атомной бомбы», а теперь хотели сделать и отцом ядерной энергетики.

В начале 1951 года проект АЭС находился только на стадии разработки, но здание под атомную станцию уже начали строить. Тяжелые конструкции из железа и бетона, которые невозможно переделать или расширить, уже существовали, а ядерный реактор все еще не был до конца спроектирован. Позже у строителей появится еще одна головная боль – вставить ядерную установку в уже готовое здание.

Интересно то, что первая АЭС в мире проектировалась так, что в ТВЭЛы – тонкие трубки, которые помещаются в ядерную установку, помещались не урановые таблетки, как сегодня, а урановый порошок, из сплавов урана и молибдена. Первые 512 ТВЭЛов для запуска АЭС были сделаны на заводе в городе Электросталь, каждый из них проходил проверку на прочность, делали это вручную. В ТВЭЛ заливалась горячая вода нужной температуры, по покраснению трубки, ученые определяли, выдерживает ли металл высокую температуру. В первых партиях ТВЭЛов было очень много бракованных изделий.

Интересные факты о первой в мире АЭС

  1. Обнинская атомная станция, первая АЭС в СССР, была снабжена ядерным реактором, который назвали АМ. Сначала расшифровывали эти буквы как «атом морской», т.к. планировали использовать установку и на атомных подводных лодках, но позже выяснилось, что конструкция слишком большая и тяжелая для подводной лодки и АМ стали расшифровывать как «атом мирный».
  2. Первая в мире АЭС была построена в рекордно короткие сроки. С момента начала стройки до сдачи ее в эксплуатацию прошло всего 4 года.
  3. По проекту первая атомная станция стоила 130 миллионов рублей. В пересчете на наши деньги это около 4х миллиардов рублей. Именно такую сумму выделили на ее проектировку и строительство.

Запуск первой в мире АЭС

Пуск первой в мире атомной электростанции состоялся 9 мая 1954 года, работала АЭС в холостом режиме. 26 июня 1954 она дала первый электрический ток, был осуществлен энергетический пуск.
Какую мощность выдавала первая атомная станция в СССР? Всего 5 МВт – на такой небольшой мощности работала первая атомная электростанция.

Мировое сообщество восприняло новость о том, что первая в мире АЭС была запущена, с гордостью и ликованием. Впервые в мире человек использовал энергию атома в мирных целях, это открывало большие перспективы и возможности для дальнейшего развития энергетики. Физики-ядерщики мира называли запуск Обнинской станции началом новой эры.

За время работы, первая АЭС в мире множество раз выходила из строя, приборы внезапно ломались и давали сигнал для аварийной остановки ядерного реактора. Интересно, что по инструкции, для нового запуска реактора необходимо 2 часа, но работники станции научились заново запускать механизм за 15-20 минут.

Такая быстрая реакция была необходима. И не, потому что подачу электроэнергии не хотелось прекращать, а потому что первая АЭС в мире стала своего рода выставочным экспонатом и почти ежедневно туда приезжали зарубежные ученые, изучавшие работу станции. Показать, что механизм не работает – значит получить большие проблемы.

Последствия запуска первой в мире АЭС

На Женевской конференции 1955 года советские ученые объявили, о том, что впервые в мире построили промышленную атомную станцию. После доклада зал аплодировал физикам стоя, даже несмотря на то, что аплодисменты были запрещены правилами собрания.

После того, как первая атомная электростанция была запущена, начались активные исследования в области применения ядерных реакций. Появились проекты атомных автомобилей и самолетов, энергию атомов даже собирались применять в борьбе с вредителями зерна и для стерилизации медицинских материалов.

Обнинская АЭС стала своеобразным толчком к открытию атомных станций по всему миру. Изучая ее модель, можно было проектировать новые станции и совершенствовать их работу. Кроме того, используя схемы работы АЭС был спроектирован атомный ледокол и усовершенствована атомная подводная лодка.

Первая атомная станция проработала 48 лет. В 2002 году ее ядерный реактор остановили. Сегодня на территории Обнинской АЭС существует своеобразный музей атомной энергетики, который с экскурсиями посещают как рядовые школьники, так и известные личности. К примеру, недавно на Обнинскую АЭС приезжал английский принц Майкл Кентский. В 2014 году первая атомная электростанция отпраздновала свое 60летие.

Открытие АЭС мира

Первая АЭС в СССР стала началом длинной цепи открытий новых АЭС мира. Новые атомные станции использовали все более усовершенствованные и мощные ядерные реакторы. Атомная электростанция мощностью 1000МВт стала привычным явлением в современном мире электроэнергетики.

Первая АЭС в мире работала с графито-водным ядерным реактором. После многие страны стали экспериментировать с устройством ядерных реакторов и изобрели новые их типы.

  1. В 1956 году открылась первая в мире АЭС с газоохлаждаемым реактором – АЭС Калдер-холл в США.
  2. В 1958 году в США открыли АЭС Шиппингпорт, но уже с водо-водяным реактором.
  3. Первая атомная электростанция с кипящим ядерным реактором – АЭС Дрезден, открытая в США В 1960.
  4. В 1962 году канадцы построили атомную станцию с тяжеловодным реактором.
  5. А в 1973 свет узрел Шевченковскую АЭС, построенную в СССР – это первая атомная электростанция с реактором-размножителем.

Атомная энергетика сегодня

Сколько атомных станций в мире? 192 атомных станции. Сегодня карта АЭС мира охватывает 31 страну. Во всех странах мира существуют 450 энергоблоков, еще 60 энергоблоков находятся на стадии строительства. Все атомные станции мира имеют общую мощность в 392 082 МВт.

Атомные электростанции в мире сосредоточены в основном в США, Америка является лидером по установленной мощности, однако в этой стране на долю атомной энергетики приходится лишь 20% всей энергосистемы. 62 АЭС США дают общую мощность в 100 400 МВт.

Второе место по установленной мощности занимает лидер АЭС в Европе – Франция. Ядерная энергетика в этой стране является национальным приоритетом и занимает 77% доли от всей добычи электроэнергии. Всего во Франции 19 атомных станций общей мощностью 63 130 МВт.

Во Франции также находится АЭС с самыми мощными в мире реакторами. На атомной станции Сиво работают два водо-водяных энергоблока. Мощность каждого из них – 1561 МВт. Настолько сильными реакторами не может похвастаться ни одна АЭС мира.
Третье место в рейтинге самых «продвинутых» стран в атомной энергетике занимает Япония. Именно в Японии находится самая мощная АЭС в мире по общему количеству вырабатываемой на АЭС энергии.

Первая АЭС в России

Вешать ярлык «первая АЭС в России» на Обнинскую АЭС было бы неправильно, т.к. над ее созданием трудились советские ученые, приехавшие со всего СССР и даже из-за его пределов. После распада Союза в 1991 году все атомные мощности стали принадлежать тем уже независимым странам, на территории коих они находились.

После распада СССР независимой России в наследство достались 28 ядерных ректоров общей мощностью 20 242 МВт. С момента обретения независимости россияне открыли еще 7 энергоблоков общей мощностью 6 964 МВт.

Сложно определить, где была открыта первая АЭС в России, т.к. в основном российские ядерщики открывают новые реакторы в уже имеющихся атомных станциях. Единственная станция, все энергоблоки которой были открыты в независимой России – Ростовская АЭС, она то и может носить название «первая АЭС в России».

Первая АЭС в России проектировалась и строилась еще во времена СССР, в 1977 были начаты строительные работы, в 1979 был окончательно утвержден ее проект. Да, мы ничего не перепутали, работы на Ростовской АЭС начинались раньше, чем ученые доделали итоговый проект. В 1990 году строительство было заморожено, и это при том, что 1й блок станции был готов на 95%.

Возобновили строительство Ростовской АЭС только в 2000 году. В марте 2001 первая АЭС в России официально начала работать, правда, пока с одним ядерным реактором вместо планирующихся четырех. В 2009 начал работать второй энергоблок станции, в 2014 – третий. В 2015 году первая атомная станция независимой России обзавелась 4м энергоблоком, который, к слову, еще не достроен и не введен в эксплуатацию.

Первая АЭС в России находится в Ростовской области недалеко от города Волгодонска.

АЭС США

Если первая атомная станция в СССР появилась в 1954 году, то ядерными станциями Америки карта АЭС пополнилась только в 1958. Учитывая непрекращающееся соревнование Советского Союза и США в области энергетики, (да и не только энергетики) 4 года являлись серьезным отставанием.

Первая АЭС США — АЭС Шиппингпорт в Пенсильвании. Первая АЭС в СССР имела мощность всего в 5МВт, американцы пошли дальше, и Шиппингпорт имела уже 60МВт мощности.
Активное строительство АЭС США продолжалось до 1979 года, тогда случилась авария на станции Три-Майл-Айленд, из-за ошибок работников станции расплавилось ядерное топливо. Устраняли аварию на этой АЭС США целых 14 лет, на это ушло более миллиарда долларов. Авария на Три-Майл-Айленд на время приостановила разработку ядерной энергетики в Америке. Однако сегодня в США находится наибольшее количество АЭС в мире.

По состоянию на июнь 2016 карта атомных станций США включает в себя 100 ядерных реакторов, общей мощностью 100,4 ГВт. На стадии строительства находятся еще 4 реактора общей мощностью 5ГВт. Атомные станции США вырабатывают 20% всей электроэнергии в этой стране.

Самая мощная АЭС США на сегодня – АЭС Пало Верде, она может обеспечить электроэнергией 4 миллиона человек и дать мощность в 4 174МВт. Кстати, АЭС США Пало Верде входит и в топ «Крупнейшие атомные электростанции мира». Там эта ядерная станция на 9м месте.

Крупнейшие АЭС мира

Атомная электростанция мощностью 1000Вт когда-то казалась недосягаемой вершиной ядерной науки. Сегодня карта АЭС мира включает в себя огромных гигантов атомной энергетики мощностями под 6, 7, 8 тысяч мегаватт. Какие они, самые крупные атомные электростанции в мире?

К самым большим и мощным АЭС в мире сегодня относят:

  1. АЭС Палюэль во Франции. Эта атомная станция работает на 4х энергоблоках, общая мощность которых составляет 5 528МВт.
  2. Французская АЭС Гравлин. Эта АЭС на севере Франции считается самой большой и мощной в своей стране. На этой АЭС работают 6 реакторов общей мощностью в 5 460МВт.
  3. АЭС Ханбит (другое название Йонгван) находится на юго-западе Южной Кореи на побережье Желтого моря. 6 ее ядерных реакторов дают мощность в 5 875 МВт. Интересно, что переименовали АЭС Йонгван в Ханбит по просьбе рыбаков местечка Йонгван, где находится станция. Продавцы рыбы не хотели, чтобы их продукция ассоциировалась во всем мире с атомной энергетикой и радиацией. Это снижало им прибыль.
    4. АЭС Ханул (ранее – АЭС Хульчин) тоже южнокорейская атомная электростанция. Примечательно, что АЭС Ханбит, она превосходит всего в 6МВт. Таким образом, мощность станции Ханул составляет 5 881 МВт.
    5. Запорожская АЭС — самая мощная АЭС в Европе, Украине и на всем постсоветском пространстве. Находится эта станция в городе Энергодар. 6 ядерных реакторов дают мощность в 6000 МВт. Строить Запорожскую АЭС начали еще в 1981 году, в 1984 году ее ввели в эксплуатацию. Сегодня эта станция генерирует пятую часть всей электроэнергии Украины и половину всей атомной энергии страны.

Самая мощная АЭС в мире

АЭС Касивадзаки-Карива – такое замысловатое название носит самая мощная АЭС. Она эксплуатирует 5 кипящих ядерных реакторов и два улучшенных кипящих ядерных реактора. Их суммарная мощность составляет 8 212 МВт (для сравнения, мы знаем, что первая АЭС в мире была мощностью всего в 5МВТ). Строилась самая мощная АЭС мира с 1980 по 1993 год. Вот несколько интересных фактов об этой атомной станции.

  1. В результате мощного землетрясения в 2007 году Касивадзаки-Карива получила множество различных повреждений, опрокинулись несколько ёмкостей с отходами низкой радиоактивности, произошла утечка радиоактивной воды в море. Из-за землетрясения повредились фильтры АЭС и радиоактивная пыль вышла за пределы станции.
  2. Общий ущерб от землетрясения в Японии 2007 года оценивается в 12 с половиной миллиардов долларов. Из них 5,8 миллиардов убытков «забрала» на ремонт самая мощная АЭС мира Касивадзаки-Карива.
  3. Интересно, что до 2011 года самой мощной АЭС можно было назвать другую японскую атомную станцию. Фукусима 1 и Фукусима 2 по сути являлись одной атомной мощностью и вместе вырабатывали 8 814МВт.
  4. Большая общая мощность АЭС совсем не значит, что в ней используются сильнейшие ядерные реакторы. Максимальная мощность одного из реакторов на Касивадзаки-Карива – 1315 МВт. Большой итоговой мощности станция добивается за счет того, что работают в ней 7 ядерных реакторов.

С того момента, как открылась первая АЭС в мире прошло больше 60ти лет. За это время атомная энергетика шагнула далеко вперед, разработав новые типы ядерных реакторов и в тысячи раз увеличив мощность атомных станций. Сегодня атомные станции мира – это огромная энергетическая империя, все более развивающаяся с каждым днем. Мы уверены, что состояние АЭС мира сегодня – это далеко не предел. За ядерной энергетикой большое и светлое будущее.

Атомная электростанция - комплекс необходимых систем, устройств, оборудования и сооружений, предназначенный для производства электрической энергии. В качестве топлива станция использует уран-235. Наличие ядерного реактора отличает АЭС от других электростанций.

На АЭС происходит три взаимных преобразования форм энергии

Ядерная энергия

переходит в тепловую

Тепловая энергия

переходит в механическую

Механическая энергия

преобразуется в электрическую

1. Ядерная энергия переходит в тепловую

Основой станции является реактор - конструктивно выделенный объем, куда загружается ядерное топливо и где протекает управляемая цепная реакция. Уран-235 делится медленными (тепловыми) нейтронами. В результате выделяется огромное количество тепла.

ПАРОГЕНЕРАТОР

2. Тепловая энергия переходит в механическую

Тепло отводится из активной зоны реактора теплоносителем - жидким или газообразным веществом, проходящим через ее объем. Эта тепловая энергия используется для получения водяного пара в парогенераторе.

ЭЛЕКТРОГЕНЕРАТОР

3. Механическая энергия преобразуется в электрическую

Механическая энергия пара направляется к турбогенератору, где она превращается в электрическую и дальше по проводам поступает к потребителям.


Из чего состоит АЭС?

Атомная станция представляет собой комплекс зданий, в которых размещено технологическое оборудование. Основным является главный корпус, где находится реакторный зал. В нём размещается сам реактор, бассейн выдержки ядерного топлива, перегрузочная машина (для осуществления перегрузок топлива), за всем этим наблюдают операторы с блочного щита управления (БЩУ).


Основным элементом реактора является активная зона(1) . Она размещена в бетонной шахте. Обязательными компонентами любого реактора являются система управления и защиты, позволяющая осуществлять выбранный режим протекания управляемой цепной реакции деления, а также система аварийной защиты – для быстрого прекращения реакции при возникновении аварийной ситуации. Все это смонтировано в главном корпусе.

Есть также второе здание, где размещается турбинный зал(2) : парогенераторы, сама турбина. Далее по технологической цепочке следуют конденсаторы и высоковольтные линии электропередач, уходящие за пределы площадки станции.

На территории находятся корпус для перегрузки и хранения в специальных бассейнах отработавшего ядерного топлива. Кроме того, станции комплектуются элементами оборотной системы охлаждения – градирнями(3) (бетонная башня, сужающаяся кверху), прудом-охладителем (естественный водоем, либо искусственно созданный) и брызгальными бассейнами.

Какие бывают АЭС?

В зависимости от типа реактора на АЭС могут быть 1, 2 или 3 контура работы теплоносителя. В России наибольшее распространение получили двухконтурные АЭС с реакторами типа ВВЭР (водо-водяной энергетический реактор).

АЭС С 1-КОНТУРНЫМИ РЕАКТОРАМИ

АЭС С 1-КОНТУРНЫМИ РЕАКТОРАМИ

Одноконтурная схема применяется на атомных станциях с реакторами типа РБМК-1000. Реактор работает в блоке с двумя конденсационными турбинами и двумя генераторами. При этом кипящий реактор сам является парогенератором, что и обеспечивает возможность применения одноконтурной схемы. Одноконтурная схема относительно проста, но радиоактивность в этом случае распространяется на все элементы блока, что усложняет биологическую защиту.

В настоящее время в России действует 4 АЭС с одноконтурными реакторами

АЭС С 2-КОНТУРНЫМИ РЕАКТОРАМИ

АЭС С 2-КОНТУРНЫМИ РЕАКТОРАМИ

Двухконтурную схему применяют на атомных станциях с в водо-водяными реакторами типа ВВЭР. В активную зону реактора подается под давлением вода, которая нагревается. Энергия теплоносителя используется в парогенераторе для образования насыщенного пара. Второй контур нерадиоактивен. Блок состоит из одной конденсационной турбины мощностью 1000 МВт или двух турбин мощностью по 500 МВт с соответствующими генераторами.

В настоящее время в России действует 5 АЭС с двухконтурными реакторами

АЭС С 3-КОНТУРНЫМИ РЕАКТОРАМИ

АЭС С 3-КОНТУРНЫМИ РЕАКТОРАМИ

Трехконтурную схему применяют на АЭС с реакторами на быстрых нейтронах с натриевым теплоносителем типа БН. Чтобы исключить контакт радиоактивного натрия с водой, сооружают второй контур с нерадиоактивным натрием. Таким образом схема получается трехконтурной.

Предложение о создании реактора АМ будущей АЭС впервые прозвучало 29 ноября 1949 г. на совещании научного руководителя атомного проекта И.В. Курчатова, директора Института физпроблем А.П. Александрова, директора НИИХимаша Н.А. Доллежаля и учёного секретаря НТС отрасли Б.С. Позднякова. Совещание рекомендовало включить в план НИР ПГУ на 1950 г. «проект реактора на обогащённом уране с небольшими габаритами только для энергетических целей общей мощностью по тепловыделению в 300 единиц, эффективной мощностью около 50 единиц» с графитом и водяным теплоносителем. Тогда же были даны поручения о срочном проведении физических расчётов и экспериментальных исследований по этому реактору.

Позднее И.В. Курчатов и А.П. Завенягин объясняли выбор реактора АМ для первоочередного строительства тем, «что в нём может быть более, чем в других агрегатах, использован опыт обычной котельной практики: общая относительная простота агрегата облегчает и удешевляет строительство».

В этот период на разных уровнях обсуждаются варианты использования энергетических реакторов.

ПРОЕКТ

Было признано целесообразным начать с создания реактора для корабельной энергетической установки. В обосновании проекта этого реактора и для «принципиального подтверждения... практической возможности преобразования тепла ядерных реакций атомных установок в механическую и электрическую энергии» было решено построить в Обнинске, на территории Лаборатории «В» , атомную электростанцию с тремя реакторными установками, в том числе и установкой АМ, ставшей реактором Первой АЭС).

Постановлением СМ СССР от 16 мая 1950 г. НИОКР по АМ поручались ЛИПАН (институт И.В. Курчатова), НИИХиммаш, ГСПИ-11, ВТИ). В 1950 - начале 1951 гг. эти организации провели предварительные расчёты (П.Э. Немировский, С.М. Фейнберг, Ю.Н. Занков), предварительные проектные проработки и др., затем все работы по этому реактору были, по решению И.В. Курчатова, переданы в Лабораторию «В» . Научным руководителем назначен , главным конструктором - Н.А. Доллежаль.

Проектом были предусмотрены следующие параметры реактора: тепловая мощность 30 тыс. кВт, электрическая мощность - 5 тыс. кВт, тип реактора - реактор на тепловых нейтронах с графитовым замедлителем и охлаждением натуральной водой.

К этому времени в стране уже был опыт создания реакторов такого типа (промышленные реакторы для наработки бомбового материала), но они существенно отличались от энергетических, к которым относится реактор АМ. Сложности были связаны с необходимостью получения в реакторе АМ высоких температур теплоносителя, из чего следовало, что придётся вести поиск новых материалов и сплавов, выдерживающих эти температуры, устойчивых к коррозии, не поглощающих нейтроны в больших количествах и др. Для инициаторов строительства АЭС с реактором АМ эти проблемы были очевидны изначально, вопрос был в том, как скоро и насколько удачно их удастся преодолеть.

РАСЧЁТЫ И СТЕНД

К моменту передачи работы по АМ в Лабораторию «В» проект определился только в общих чертах. Оставалось много физических, технических и технологических проблем, которые предстояло решить, и их число возрастало по мере работы над реактором.

Прежде всего, это касалось физических расчётов реактора, которые приходилось вести, не имея многих необходимых для этого данных. В Лаборатории «В» некоторыми вопросами теории реакторов на тепловых нейтронах занимался Д.Ф. Зарецкий, а основные расчёты проводились группой М.Е. Минашина в отделе А.К. Красина . М.Е. Минашина особенно беспокоило отсутствие точных значений многих констант. Организовать их измерение на месте было сложно. По его инициативе часть из них постепенно пополнялась в основном за счёт измерений, проведённых ЛИПАН и немногих в Лаборатории «В» , но в целом нельзя было гарантировать высокую точность рассчитываемых параметров. Поэтому в конце февраля - начале марта 1954 г. был собран стенд АМФ - критсборка реактора АМ, которая подтвердила удовлетворительное качество расчётов. И хотя на сборке нельзя было воспроизвести все условия реального реактора, результаты поддержали надежду на успех, хотя сомнений оставалось много.

На этом стенде 3 марта 1954 г. была впервые в Обнинске осуществлена цепная реакция деления урана.

Но, учитывая, что экспериментальные данные постоянно уточнялись, совершенствовалась методика расчётов, вплоть до запуска реактора продолжалось изучение величины загрузки реактора топливом, поведение реактора в нестандартных режимах, вычислялись параметры поглощающих стержней и др.

СОЗДАНИЕ ТВЭЛА

С другой важнейшей задачей - созданием тепловыделяющего элемента (твэла) - блестяще справились В.А. Малых и коллектив технологического отдела Лаборатории «В» . Разработкой твэла занималось несколько смежных организаций, но только вариант, предложенный В.А. Малых , показал высокую работоспособность. Поиск конструкции был завершён в конце 1952 г. разработкой нового типа твэла (с дисперсионной композицией уран-молибденовой крупки в магниевой матрице).

Этот тип твэла позволял проводить их отбраковку на предреакторных испытаниях (в Лаборатории «В» для этого были созданы специальные стенды), что очень важно для обеспечения надёжной работы реактора. Устойчивость нового твэла в нейтронном потоке изучалась в ЛИПАН на реакторе МР. В НИИХиммаше были разработаны рабочие каналы реактора.

Так впервые в нашей стране была решена, пожалуй, самая главная и самая сложная проблема зарождающейся атомной энергетики – создание тепловыделяющего элемента.

СТРОИТЕЛЬСТВО

В 1951 г., одновременно с началом в Лаборатории «В» исследовательских работ по реактору АМ, на её территории началось строительство здания атомной станции.

Начальником строительства был назначен П.И. Захаров, главным инженером объекта - .

Как вспоминал Д.И. Блохинцев, «здание АЭС в важнейших своих частях имело толстые стены из железобетонного монолита, чтобы обеспечить биологическую защиту от ядерного излучения. В стены закладывались трубопроводы, каналы для кабеля, для вентиляции и т.п. Ясно, что переделки были невозможны, и поэтому при проектировании здания, по возможности, предусматривались запасы с расчётом на предполагаемые изменения. На разработку новых видов оборудования и на выполнение научно-исследовательских работ давались научно-технические задания для «сторонних организаций» – институтов, конструкторских бюро и предприятий. Часто эти сами задания не могли быть полными и уточнялись и дополнялись по мере проектирования. Основные инженерно-конструкторские решения... разрабатывались конструкторским коллективом во главе с Н.А. Доллежалем и его ближайшим помощником П.И. Алещенковым...»

Стиль работы по строительству первой АЭС характеризовался быстрым принятием решений, скоростью разработок, определённой выработанной глубиной первичных проработок и способами доработки принимаемых технических решений, широким охватом вариантных и страхующих направлений. Первая АЭС была создана за три года.

ПУСК

В начале 1954 г. началась проверка и опробование различных систем станции.

9 мая 1954 года в Лаборатории "В" началась загрузка активной зоны реактора АЭС топливными каналами. При внесении 61-го топливного канала было достигнуто критическое состояние, в 19 ч. 40 мин. В реакторе началась цепная самоподдерживающаяся реакция деления ядер урана. Состоялся физический пуск атомной электростанции.

Вспоминая о пуске, писал: «Постепенно мощность реактора увеличивалась, и наконец где-то около здания ТЭЦ, куда подавался пар от реактора, мы увидели струю, со звонким шипением вырывавшуюся из клапана. Белое облачко обыкновенного пара, и к тому же еще недостаточно горячего, чтобы вращать турбину, показалось нам чудом: ведь это первый пар, полученный на атомной энергии. Его появление послужило поводом для объятий, поздравлений «с легким паром» и даже для слез радости. Наше ликование разделял и И.В. Курчатов, принимавший участие в работе в те дни. После получения пара с давлением 12 атм. и при температуре 260 °C стало возможным изучение всех узлов АЭС в условиях, близких к проектным, а 26 июня 1954 г., в вечернюю смену, в 17 час. 45 мин., была открыта задвижка подачи пара на турбогенератор, и он начал вырабатывать электроэнергию от атомного котла. Первая в мире атомная электростанция встала под промышленную нагрузку».

«В Советском Союзе усилиями ученых и инженеров успешно завершены работы по проектированию и строительству первой промышленной электростанции на атомной энергии полезной мощностью 5000 киловатт. 27 июня атомная станция была пущена в эксплуатацию и дала электрический ток для промышленности и сельского хозяйства прилежащих районов.»

Ещё до пуска была подготовлена первая программа экспериментальных работ на реакторе АМ, и вплоть до закрытия станции он был одной из основных реакторных баз, на которых проводились нейтронно-физические исследования, исследования по физике твёрдого тела, испытания твэлов, ЭГК, наработка изотопной продукции и др. На АЭС прошли подготовку экипажи первых атомных подводных лодок, атомного ледокола «Ленин», персонал советских и зарубежных АЭС.

Пуск АЭС для молодого коллектива института стал первой проверкой на готовность к решению новых и более сложных задач. В начальные месяцы работы доводили отдельные агрегаты и системы, подробно изучали физические характеристики реактора, тепловой режим оборудования и всей станции, дорабатывали и исправляли различные устройства. В октябре 1954 г. станция была выведена на проектную мощность.

«Лондон, 1 июля (ТАСС). Сообщение о пуске в СССР первой промышленной электростанции на атомной энергии широко отмечается английской печатью, Московский корреспондент «Дейли уоркер» пишет, что это историческое событие «имеет неизмеримо большее значение, чем сброс первой атомной бомбы на Хиросиму.

Париж, 1 июля (ТАСС). Лондонский корреспондент агентства Франс Пресс передает, что сообщение о пуске в СССР первой в мире промышленной электростанции, работающей на атомной энергии, встречено в лондонских кругах специалистов-атомников с большим интересом. Англия, продолжает корреспондент, строит атомную электростанцию в Колдерхолле. Полагают, что она сможет вступить в строй не ранее чем через 2,5 года...

Шанхай, 1 июля (ТАСС). Откликаясь на пуски в эксплуатацию советской электростанции на атомной энергии, токийское радио передает: США и Англия также планируют строительство атомных электростанций, но завершение их строительства они намечают на 1956-1957 годы. То обстоятельство, то Советский Союз опередил Англию и Америку в деле использования атомной энергии в мирных целях, говорит о том, что советские ученые добились больших успехов в области атомной энергии. Один из выдающихся японских специалистов в области ядерной физики - профессор Иосио Фудзиока, комментируя сообщение о пуске в СССР электростанции на атомной энергии, заявил, что это является началом «новой эры».

 

Возможно, будет полезно почитать: